Skip to main content
Original Article

The Application of the Rorschach Inkblot Test in the Study of Neural and Cognitive Aging

Published Online:https://doi.org/10.1027/1192-5604/a000120

Abstract. The Rorschach Inkblot test has been adopted and adapted by many researchers to assess and predict different aspects of human experience and cognitive performance. The present review examines research that incorporates the Rorschach to evaluate neural and cognitive aging as well as decline in age-related disease. Specifically, differences in amygdala and cortical regions, as well as mirror neuron and asymmetrical hemisphere activity that correlate with specific responses to Rorschach stimuli are discussed in the context of typical changes in brain structure and function in the course of aging. In addition, the present review provides a proposed framework for expanding the use of the Rorschach to evaluate other domains of neural and cognitive function. The authors conclude that, despite a need for increased research, the Rorschach is a viable measure to evaluate certain aspects of cognitive function and decline throughout the lifespan.

References

  • Aizawa, N., Ishibashi, M., Nakamura, Y., Uchiumi, C., Makita, K., & Iwakiri, M. (2018). Near-infrared spectroscopy detects prefrontal activities during Rorschach inkblot method: Near-infrared spectroscopy and Rorschach. Japanese Psychological Research, 60(4), 242–250. https://doi.org/10.1111/jpr.12195 First citation in articleCrossrefGoogle Scholar

  • Ames, L. B. (1966). Changes in Rorschach response throughout the human life span. Genetic Psychology Monographs, 74(1), 89–125. First citation in articleGoogle Scholar

  • Ames, L. B., Metraux, R., Rodell, J. L., & Walker, R. (1977). Rorschach responses in old age (2nd ed.). Northvale, NJ: Jason Aronson. First citation in articleGoogle Scholar

  • Ando’, A., Pineda, J. A., Giromini, L., Soghoyan, G., QunYang, Bohm, M., … Zennaro, A. (2018). Effects of repetitive transcranial magnetic stimulation (rTMS) on attribution of movement to ambiguous stimuli and EEG mu suppression. Brain Research, 1680, 69–76. https://doi.org/10.1016/j.brainres.2017.12.007 First citation in articleCrossrefGoogle Scholar

  • Ando’, A., Salatino, A., Giromini, L., Ricci, R., Pignolo, C., Cristofanelli, S., … Zennaro, A. (2015). Embodied simulation and ambiguous stimuli: The role of the mirror neuron system. Brain Research, 1629, 135–142. https://doi.org/10.1016/j.brainres.2015.10.025 First citation in articleCrossrefGoogle Scholar

  • Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2008). Right temporopolar activation associated with unique perception. NeuroImage, 41(1), 145–152. https://doi.org/10.1016/j.neuroimage.2008.01.059 First citation in articleCrossrefGoogle Scholar

  • Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2010a). Amygdalar enlargement associated with unique perception. Cortex, 46(1), 94–99. https://doi.org/10.1016/j.cortex.2008.08.001 First citation in articleCrossrefGoogle Scholar

  • Asari, T., Konishi, S., Jimura, K., Chikazoe, J., Nakamura, N., & Miyashita, Y. (2010b). Amygdalar modulation of frontotemporal connectivity during the inkblot test. Psychiatry Research: Neuroimaging, 182(2), 103–110. https://doi.org/10.1016/j.pscychresns.2010.01.002 First citation in articleCrossrefGoogle Scholar

  • Borghesani, P. R., Madhyastha, T. M., Aylward, E. H., Reiter, M. A., Swarny, B. R., Schaie, K. W., & Willis, S. L. (2013). The association between higher order abilities, processing speed, and age are variably mediated by white matter integrity during typical aging. Neuropsychologia, 51(8). https://doi.org/10.1016/j.neuropsychologia.2013.03.005 First citation in articleCrossrefGoogle Scholar

  • Caldwell, B. M. (1954). The use of the Rorschach in personality research with the aged. Journal of Gerontology, 9(3), 316–323. https://doi.org/10.1093/geronj/9.3.316 First citation in articleCrossrefGoogle Scholar

  • Chaudhury, S., John, T. R., Bhatoe, H. S., & Rohatgi, S. (1999). Evaluation of Piotrowski’s organic signs of head injury. Journal of Projective Psychology & Mental Health, 6(1), 53–57. (1999-05406-006) First citation in articleGoogle Scholar

  • Chen, J. J. (2019). Functional MRI of brain physiology in aging and neurodegenerative diseases. NeuroImage, 187, 209–225. https://doi.org/10.1016/j.neuroimage.2018.05.050 First citation in articleCrossrefGoogle Scholar

  • Davidson, H. H., & Kruglov, L. (1952). Personality characteristics of the institutionalized aged. Journal of Consulting Psychology, 16(1), 5–12. First citation in articleCrossrefGoogle Scholar

  • de Felipe-Oroquieta, J., Ortega, F., Maldonado, A., Pozo, M. A., & Sola, R. G. (2006). Cerebral metabolism and personality in patients with epilepsy of the temporal lobe. Rorschachiana, 28(1), 3–15. https://doi.org/10.1027/1192-5604.28.1.3 First citation in articleLinkGoogle Scholar

  • Dennis, N. A., & Peterson, K. M. (2012). Neural correlates mediating age differences in episodic memories: Evidence from BOLD contrasts and connectivity analysis. Psychologia, 55(2), 112–130. https://doi.org/10.2117/psysoc.2012.112 First citation in articleCrossrefGoogle Scholar

  • Exner, J. E. Jr. (2003). The Rorschach: A comprehensive system (4th ed.). New York, NY: Wiley. First citation in articleGoogle Scholar

  • Farina, E., Baglio, F., Pomati, S., D’Amico, A., Campini, I. C., Di Tella, S., … Pozzo, T. (2017). The mirror neurons network in aging, mild cognitive impairment, and Alzheimer disease: A functional MRI Study. Frontiers in Aging Neuroscience, 9. https://doi.org/10.3389/fnagi.2017.00371 First citation in articleCrossrefGoogle Scholar

  • Gilbert, J. G. (1952). Understanding old age. Oxford, UK: Ronald Press. First citation in articleGoogle Scholar

  • Giromini, L., Porcelli, P., Viglione, D. J., Parolin, L., & Pineda, J. A. (2010). The feeling of movement: EEG evidence for mirroring activity during the observations of static, ambiguous stimuli in the Rorschach cards. Biological Psychology, 85(2), 233–241. https://doi.org/10.1016/j.biopsycho.2010.07.008 First citation in articleCrossrefGoogle Scholar

  • Giromini, L., Viglione, D. J., Brusadelli, E., Zennaro, A., Di Girolamo, M., & Porcelli, P. (2016). The effects of neurological priming on the Rorschach: A pilot experiment on the human movement response. Rorschachiana, 37(1), 58–73. https://doi.org/10.1027/1192-5604/a000077 First citation in articleLinkGoogle Scholar

  • Giromini, L., Viglione, D. J., Pineda, J. A., Porcelli, P., Hubbard, D., Zennaro, A., & Cauda, F. (2017). Human movement responses to the Rorschach and mirroring activity: An fMRI study. Assessment, 1073191117731813. https://doi.org/10.1177/1073191117731813 First citation in articleGoogle Scholar

  • Giromini, L., Viglione, D. J., Zennaro, A., & Cauda, F. (2017). Neural activity during production of rorschach responses: An fMRI study. Psychiatry Research: Neuroimaging, 262, 25–31. https://doi.org/10.1016/j.pscychresns.2017.02.001 First citation in articleCrossrefGoogle Scholar

  • Goodkind, M. S., Gyurak, A., McCarthy, M., Miller, B. L., & Levenson, R. W. (2010). Emotion regulation deficits in frontotemporal lobar degeneration and Alzheimer’s disease. Psychology and Aging, 25(1), 30–37. https://doi.org/10.1037/a0018519 First citation in articleCrossrefGoogle Scholar

  • Greenwood, P. M. (2000). The frontal aging hypothesis evaluated. Journal of the International Neuropsychological Society, 6(6), 705–726. https://doi.org/10.1017/S1355617700666092 First citation in articleCrossrefGoogle Scholar

  • Gross, A., Newton, R. R., & Brooks, R. B. (1990). Rorschach responses in healthy, community dwelling older adults. Journal of Personality Assessment, 55(1–2), 335–343. https://doi.org/10.1080/00223891.1990.9674070 First citation in articleCrossrefGoogle Scholar

  • Grossman, C., Warshawsky, F., & Hertz, M. (1951). Rorschach studies of personality characteristics of a group of institutionalized old people. Journal of Gerontology, 6(Suppl. 3), 97. First citation in articleGoogle Scholar

  • Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: A review of MRI findings. International Journal of Geriatric Psychiatry, 24(2), 109–117. https://doi.org/10.1002/gps.2087 First citation in articleCrossrefGoogle Scholar

  • Hiraishi, H., Haida, M., Matsumoto, M., Hayakawa, N., Inomata, S., & Matsumoto, H. (2012). Differences of prefrontal cortex activity between picture-based personality tests: A near-infrared spectroscopy study. Journal of Personality Assessment, 94(4), 366–371. https://doi.org/10.1080/00223891.2012.666597 First citation in articleCrossrefGoogle Scholar

  • Ilonen, T., Salokangas, R. K. R., & Study Group, T. (2016). The Rorschach Coping Deficit Index as an indicator of neurocognitive dysfunction. Rorschachiana, 37(1), 28–40. https://doi.org/10.1027/1192-5604/a000075 First citation in articleLinkGoogle Scholar

  • Ishibashi, M., Uchiumi, C., Jung, M., Aizawa, N., Makita, K., Nakamura, Y., & Saito, D. N. (2016). Differences in brain hemodynamics in response to achromatic and chromatic cards of the Rorschach: A fMRI study. Rorschachiana, 37(1), 41–57. https://doi.org/10.1027/1192-5604/a000076 First citation in articleLinkGoogle Scholar

  • Jimura, K., Konishi, S., Asari, T., & Miyashita, Y. (2009). Involvement of medial prefrontal cortex in emotion during feedback presentation. NeuroReport, 20(9), 886–890. https://doi.org/10.1097/WNR.0b013e32832c5f4d First citation in articleCrossrefGoogle Scholar

  • Kahana, B. (1978). The use of projective techniques in personality assessment of the aged. In M. StorandtI. C. SieglerM. F. EliasEds., The clinical psychology of aging (pp. 145–180). New York, NY: Springer US. https://doi.org/10.1007/978-1-4684-3342-5_6 First citation in articleGoogle Scholar

  • Kennedy, K. M., & Raz, N. (2015). Normal aging of the brain. In A. W. TogaEd., Brain mapping: An encyclopedia reference (pp. 603–617). Cambridge, MA: Elsevier. First citation in articleGoogle Scholar

  • Kimoto, A., Iseki, E., Ota, K., Murayama, N., Sato, K., Ogura, N., & Arai, H. (2017). Differences in responses to the Rorschach test between patients with dementia with Lewy bodies and Alzheimer’s disease – from the perspective of visuoperceptual impairment. Psychiatry Research, 257, 456–461. https://doi.org/10.1016/j.psychres.2017.08.038 First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T. J., Brammer, M. J., Levelt, W., Bartels, M., & McGuire, P. K. (2004). Pausing for thought: Engagement of left temporal cortex during pauses in speech. NeuroImage, 21(1), 84–90. https://doi.org/10.1016/j.neuroimage.2003.09.041 First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T. J., Brammer, M. J., Williams, S. C. R., & McGuire, P. K. (2000). Lexical retrieval during fluent speech production: An fMRI study. Cognitive Neuroscience and Neuropsychology, 11(18), 4093–4096. First citation in articleGoogle Scholar

  • Kircher, T. T. J., Liddle, P. F., Brammer, M. J., Williams, S. C. R., Murray, R. M., & McGuire, P. K. (2001). Neural correlates of formal thought disorder in schizophrenia: Preliminary findings from a functional magnetic resonance imaging study. Archives of General Psychiatry, 58(8), 769. https://doi.org/10.1001/archpsyc.58.8.769 First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T. J., Liddle, P. F., Brammer, M. J., Williams, S. C. R., Murray, R. M., & McGuire, P. K. (2002). Reversed lateralization of temporal activation during speech production in thought disordered patients with schizophrenia. Psychological Medicine, 32(3), 439–449. https://doi.org/10.1017/S0033291702005287 First citation in articleCrossrefGoogle Scholar

  • Kircher, T. T. J., Oh, T. M., Brammer, M. J., & McGuire, P. K. (2005). Neural correlates of syntax production in schizophrenia. British Journal of Psychiatry, 186(03), 209–214. https://doi.org/10.1192/bjp.186.3.209 First citation in articleCrossrefGoogle Scholar

  • Klopfer, W. G. (1946). Personality patterns of old age. Rorschach Research Exchange, 10, 145–166. https://doi.org/10.1080/08934037.1946.10820067 First citation in articleCrossrefGoogle Scholar

  • Klopfer, W. G. (1965). Clinical patterns of aging. In B. B. WolmanEd., Handbook of clinical psychology (pp. 826–837). New York, NY: McGraw-Hill. First citation in articleGoogle Scholar

  • Klopfer, W. G. (1974). The Rorschach and old age. Journal of Personality Assessment, 38(5), 420–422. https://doi.org/10.1080/00223891.1974.10119997 First citation in articleCrossrefGoogle Scholar

  • Light, B. H., & Amick, J. H. (1956). Rorschach responses of normal aged. Journal of Projective Techniques, 20(2), 185–195. https://doi.org/10.1080/08853126.1956.10380687 First citation in articleCrossrefGoogle Scholar

  • Lindenberger, U., von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age variance extraction: What’s change got to do with it? Psychology and Aging, 26(1), 34–47. https://doi.org/10.1037/a0020525 First citation in articleCrossrefGoogle Scholar

  • Luciani, M., Cecchini, M., Altavilla, D., Palumbo, L., Aceto, P., Ruggeri, G., … Lai, C. (2014). Neural correlate of the projection of mental states on the not-structured visual stimuli. Neuroscience Letters, 573, 24–29. https://doi.org/10.1016/j.neulet.2014.05.008 First citation in articleCrossrefGoogle Scholar

  • Mattlar, C.-E., Knuts, L.-R., & Alanen, E. (1986). The Piotrowski sign system: Its association with age and intelligence and the structure of the Piotrowski signs. British Journal of Projective Psychology & Personality Study, 31(1), 3–15. (1988-00081-001) First citation in articleGoogle Scholar

  • Meyer, G. J., Erard, R. E., Erdberg, P., Mihura, J. L., & Viglione, D. J. (2011). Rorschach Performance Assessment System: Administration, coding, interpretation, and technical manual. Toledo, OH: Rorschach Performance Assessment Systems LLC. First citation in articleGoogle Scholar

  • Meyer, G. J., Erdberg, P., & Shaffer, T. W. (2007). Toward international normative reference data for the comprehensive system. Journal of Personality Assessment, 89(Suppl. 1), S201–216. https://doi.org/10.1080/00223890701629342 First citation in articleCrossrefGoogle Scholar

  • Meyer, G. J., Giromini, L., Viglione, D. J., Reese, J. B., & Mihura, J. L. (2015). The association of gender, ethnicity, age, and education with Rorschach scores. Assessment, 22(1), 46–64. https://doi.org/10.1177/1073191114544358 First citation in articleCrossrefGoogle Scholar

  • Mihura, J. L., Meyer, G. J., Dumitrascu, N., & Bombel, G. (2013). The validity of individual Rorschach variables: Systematic reviews and meta-analyses of the comprehensive system. Psychological Bulletin, 139(3), 548–605. https://doi.org/10.1037/a0029406 First citation in articleCrossrefGoogle Scholar

  • Molenberghs, P., Cunnington, R., & Mattingley, J. B. (2009). Is the mirror neuron system involved in imitation? A short review and meta-analysis. Neuroscience and Biobehavioral Reviews, 33(7), 975–980. https://doi.org/10.1016/j.neubiorev.2009.03.010 First citation in articleCrossrefGoogle Scholar

  • Muzio, E., Andronikof, A., David, J., & Di Menza, C. (2001). L’intérêt du test de Rorschach (Système Intégré) dans l’évaluation psychométrique en gériatrie: Exemple de la démence de type Alzheimer [The interest of the Rorschach test (Integrated System) in psychometric evaluation in geriatrics: Example of dementia of the Alzheimer type]. La Revue de Geriatrie, 26(2), 121–130. First citation in articleGoogle Scholar

  • Muzio, E., & Luperto, L. (1999). Démence et fonctionnement de la personnalité à travers le Rorschach chez un groupe de femmes âgées hospitalisées [Dementia and personality functioning through the Rorschach in a group of hospitalized elderly women]. European Review of Applied Psychology/Revue Européenne de Psychologie Appliquée, 49(3), 227–236. First citation in articleGoogle Scholar

  • Nashiro, K., Sakaki, M., & Mather, M. (2012). Age differences in brain activity during emotion processing: Reflections of age-related decline or increased emotion regulation? Gerontology, 58(2), 156–163. https://doi.org/10.1159/000328465 First citation in articleCrossrefGoogle Scholar

  • Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249. https://doi.org/10.1016/j.tics.2005.03.010 First citation in articleCrossrefGoogle Scholar

  • O’Shea, A., Cohen, R. A., Porges, E. C., Nissim, N. R., & Woods, A. J. (2016). Cognitive aging and the hippocampus in older adults. Frontiers in Aging Neuroscience, 8, 298. https://doi.org/10.3389/fnagi.2016.00298 First citation in articleGoogle Scholar

  • Ota, M., Obu, S., Sato, N., & Asada, T. (2011). Neuroimaging study in subjects at high risk of psychosis revealed by the Rorschach test and first-episode schizophrenia. Acta Neuropsychiatrica, 23, 125–131. https://doi.org/10.111/j.601-5215.2011.00547.x First citation in articleCrossrefGoogle Scholar

  • Overall, J. E., & Gorham, D. R. (1972). Organicity versus old age in objective and projective test performance. Journal of Consulting and Clinical Psychology, 39(1), 98–105. https://doi.org/10.1037/h0033149 First citation in articleCrossrefGoogle Scholar

  • Panek, P. E., Wagner, E. E., & Kennedy-Swergel, K. (1983). A review of projective test findings with older adults. Journal of Personality Assessment, 47, 562–582. First citation in articleCrossrefGoogle Scholar

  • Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299–320. https://doi.org/10.1037/0882-7974.17.2.299 First citation in articleCrossrefGoogle Scholar

  • Perry, W., Potterat, E., Auslander, L., Kaplan, E., & Jeste, D. (1996). A neuropsychological approach to the Rorschach in patients with dementia of the Alzheimer type. Assessment, 3(3), 351–363. https://doi.org/10.1177/1073191196003003014 First citation in articleCrossrefGoogle Scholar

  • Pertchik, K., Shaffer, T. W., Erdberg, P., & Margolin, D. I. (2007). Rorschach comprehensive system data for a sample of 52 older adult nonpatients from the United States. Journal of Personality Assessment, 89(Suppl. 1), S166–S173. https://doi.org/10.1080/00223890701583598 First citation in articleCrossrefGoogle Scholar

  • Pineda, J. A., Giromini, L., Porcelli, P., Parolin, L., & Viglione, D. J. (2011). Mu suppression and human movement responses to the Rorschach test. NeuroReport, 22(5), 223–226. https://doi.org/10.1097/WNR.0b013e328344f45c First citation in articleCrossrefGoogle Scholar

  • Piotrowski, Z. (1936). On the Rorschach method and its application in organic disturbances of the central nervous system. Rorschach Research Exchange, 1, 23–40. https://doi.org/10.1080/08934037.1936.10381486 First citation in articleCrossrefGoogle Scholar

  • Porcelli, P., Giromini, L., Parolin, L., Pineda, J. A., & Viglione, D. J. (2013). Mirroring activity in the brain and movement determinant in the Rorschach test. Journal of Personality Assessment, 95(5), 444–456. https://doi.org/10.1080/00223891.2013.775136 First citation in articleCrossrefGoogle Scholar

  • Porcelli, P., & Kleiger, J. H. (2016). The “feeling of movement”: Notes on the Rorschach human movement response. Journal of Personality Assessment, 98(2), 124–134. https://doi.org/10.1080/00223891.2015.1102146 First citation in articleCrossrefGoogle Scholar

  • Prados, M., & Fried, E. G. (1947). Personality structure of the older age groups. Journal of Clinical Psychology, 3(2), 113–120. https://doi.org/10.1002/1097-4679(194704)3:2<113::AID-JCLP2270030202>3.0.CO;2-Y First citation in articleCrossrefGoogle Scholar

  • Rasia-Filho, A. A., Londero, R. G., & Achaval, M. (2000). Functional activities of the amygdala: An overview. Journal of Psychiatry and Neuroscience, 25(1), 14–23. First citation in articleGoogle Scholar

  • Regard, M., & Landis, T. (1997). Hemispheric differences in the processing of ambiguity: Tachistoscopic studies with inkblots. Rorschachiana, 22(1), 114–129. https://doi.org/10.1027/1192-5604.22.1.114 First citation in articleLinkGoogle Scholar

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230 First citation in articleCrossrefGoogle Scholar

  • Rorschach, H. (1921). Psychodiagnostik. Bern, Germany: Bircher. First citation in articleGoogle Scholar

  • Rorschach, H. (1942). Psychodiagnostics. New York, NY: Grune & Stranton. First citation in articleGoogle Scholar

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403–428. First citation in articleCrossrefGoogle Scholar

  • Shimonaka, Y., & Nakazato, K. (1991). Aging and terminal changes in rorschach responses among the Japanese elderly. Journal of Personality Assessment, 57(1), 10–18. First citation in articleCrossrefGoogle Scholar

  • St. Jacques, P. L., Dolcos, F., & Cabeza, R. (2010). Effects of aging on functional connectivity of the amygdala during negative evaluation: A network analysis of fMRI data. Neurobiology of Aging, 31(2), 315–327. https://doi.org/10.1016/j.neurobiolaging.2008.03.012 First citation in articleCrossrefGoogle Scholar

  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004 First citation in articleCrossrefGoogle Scholar

  • Stevens, F. L., Hurley, R. A., Taber, K. H., Hurley, R. A., Hayman, L. A., & Taber, K. H. (2011). Anterior cingulate cortex: Unique role in cognition and emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 23(2), 121–125. https://doi.org/10.1176/jnp.23.2.jnp121 First citation in articleCrossrefGoogle Scholar

  • Thaler, M. B. (1952). The application of three theories of personality to the Rorschach records of seventy-five aged subjects (Unpublished doctoral dissertation). University of Denver, CO, USA First citation in articleGoogle Scholar

  • Thaler, M. B. (1956). Relationships among Wechsler, Weigl, Rorschach, Eeg Findings, and abstract-concrete behavior in a group of normal aged subjects. Journal of Gerontology, 11(4), 404–409. https://doi.org/10.1093/geronj/11.4.404 First citation in articleCrossrefGoogle Scholar

  • Wang, J. X., Cohen, N. J., & Voss, J. L. (2015). Covert rapid action-memory simulation (CRAMS): A hypothesis of hippocampal–prefrontal interactions for adaptive behavior. Neurobiology of Learning and Memory, 117, 22–33. https://doi.org/10.1016/j.nlm.2014.04.003 First citation in articleCrossrefGoogle Scholar

  • Weiner, I. B. (2003). Principles of Rorschach interpretation (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates. First citation in articleCrossrefGoogle Scholar