Skip to main content
Original Article

Interventions for Children With Mathematical Difficulties

A Meta-Analysis

Published Online:https://doi.org/10.1027/2151-2604/a000211

The purpose of this study was to meta-analyze the effectivity of interventions for children with mathematical difficulties. Furthermore, we investigated whether the fit between characteristics of participants and interventions was a decisive factor. Thirty-five evaluation studies that used pre-post-control group designs with at least 10 participants per group were analyzed. Using a random-effects model, we found a high, significant mean effect ( = 0.83) for the standardized mean difference. Moreover, a significant effect was found for studies that used direct or assisted instruction, that fostered basic arithmetical competencies, and that used single-subject settings. Effect size was not moderated by administration mode (computer-based vs. face-to-face intervention) or by whether interventions were derived from theory. Interventions for children with at-risk dyscalculia were effective on average. Results of the fit between characteristics of the participants and intervention characteristics are provided. In summary, mathematics interventions are found to be effective for children with mathematical difficulties, though there was a high effect size variance between studies.

Studies marked with an asterisk were included in the analysis.

References

  • American Psychiatric Association . (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Publishing. First citation in articleCrossrefGoogle Scholar

  • Anderson, S., & Byrnes, J. (unpublished). robustmeta: Robust random-effect meta-regression with dependent effect sizes. R package version 0.1. First citation in articleGoogle Scholar

  • * Beygi, A., Padakannaya, P., & Gowramma, I. (2010). A remedial intervention for addition and subtraction in children with dyscalculia. Journal of the Indian Academy of Applied Psychology, 36, 9–17. First citation in articleGoogle Scholar

  • Burns, M. K., Codding, R. S., Boice, C. H., & Lukito, G. (2010). Meta-analysis of acquisition and fluency math interventions with instructional and frustration level skills: Evidence for a skill-by-treatment interaction. School Psychology Review, 39, 69–83. First citation in articleCrossrefGoogle Scholar

  • * Burns, M. K., Kanive, R., & DeGrande, M. (2010). Effect of a computer-delivered math fact intervention as a supplemental intervention for math in third and fourth grades. Remedial and Special Education, 33, 184–191. doi: 10.1177/0741932510381652 First citation in articleCrossrefGoogle Scholar

  • * Christensen, C. A., & Gerber, M. M. (1990). Effectiveness of computerized drill and practice games in teaching basic math facts. Exceptionality, 1, 149–165. doi: 10.1080/09362839009524751 First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Cohen Kadosh, R., Dowker, A., Heine, A., Kaufmann, L., & Kucian, K. (2013). Interventions for improving numerical abilities: Present and future. Trends in Neuroscience and Education. Advance online publication. doi: 10.1016/j.tine.2013.04.001 First citation in articleCrossrefGoogle Scholar

  • Dowker, A. (2004). What works for children with mathematical difficulties? London, UK: Department for Education and Skills. [Research report RR554] First citation in articleGoogle Scholar

  • Dowker, A. (2009). What works for children with mathematical difficulties? The effectiveness of intervention schemes. London, UK: Department for Education and Skills. [Technical report] First citation in articleGoogle Scholar

  • * Ehlert, A., & Fritz, A. (2013). Evaluation of maths training programme for children with learning difficulties. South African Journal of Childhood Education, 3, 117–141. First citation in articleCrossrefGoogle Scholar

  • * Ennemoser, M., & Krajewski, K. (2007). Effekte der Förderung des Teil-Ganzes-Verständnisses bei Erstklässlern mit schwachen Mathematikleistungen [Effects of strengthening the part-whole understanding of first grade pupils with poor maths performance]. Vierteljahresschrift für Heilpädagogik, 76, 228–240. First citation in articleGoogle Scholar

  • * Fantuzzo, J. W., Davis, G. Y., & Ginsburg, M. D. (1995). Effects of parent involvement in isolation or in combination with peer tutoring on student self-concept and mathematics achievement. Journal of Educational Psychology, 87, 272–281. First citation in articleCrossrefGoogle Scholar

  • * Fuchs, D., Roberts, P. H., Fuchs, L. S., & Bowers, J. (1996). Reintegrating students with learning disabilities into the mainstream: A two-year study. Learning Disabilities Research and Practice, 11, 214–229. First citation in articleGoogle Scholar

  • * Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Appleton, A. C. (2002). Explicitly teaching for transfer: Effects on the mathematical problem-solving performance of students with mathematics disabilities. Learning Disabilities Research and Practice, 17, 90–106. doi: 10.1111/1540-5826.00036 First citation in articleCrossrefGoogle Scholar

  • * Fuchs, L. S., Fuchs, D., Hamlet, C. L., Powell, S. R., Capizzi, A. M., & Seethaler, P. M. (2006). The effects of computer-assisted instruction on number combination skill in at-risk first graders. Journal of Learning Disabilities, 39, 467–475. doi: 10.1177/00222194060390050701 First citation in articleCrossrefGoogle Scholar

  • * Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2010). The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learning and Individual Differences, 20, 89–100. doi: 10.1016/j.lindif.2009.09.003 First citation in articleCrossrefGoogle Scholar

  • * Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., … Zumeta, R. O. (2009). Remediating number combination and word problem deficits among students with mathematics difficulties: A randomized control trial. Journal of Educational Psychology, 101, 561–576. doi: 10.1037/a0014701 First citation in articleCrossrefGoogle Scholar

  • Fuchs, L. S., & Vaughn, S. (2012). Responsiveness-to-intervention: A decade later. Journal of Learning Disabilities, 45, 195–203. doi: 10.1177/0022219412442150 First citation in articleCrossrefGoogle Scholar

  • * Gabriel, F., Coche, F., Szucs, D., Carette, V., Rey, B., & Content, A. (2012). Developing children’s understanding of fractions: An intervention study. Mind, Brain and Education, 6, 137–146. doi: 10.1111/j.1751-228X.2012.01149.x First citation in articleCrossrefGoogle Scholar

  • Geary, D. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4–15. doi: 10.1177/00222194040370010201 First citation in articleCrossrefGoogle Scholar

  • Gersten, R., Clarke, B., Johnson, N. C., Newman-Gonchar, R., Haymond, K., & Wilkins, C. (2012). Universal screenings in mathematics for the primary grades: Beginnings of a research base. Council for Exceptional Children, 78, 423–445. doi: 10.1177/001440291207800403 First citation in articleGoogle Scholar

  • Goldman, S. R. (1989). Strategy instruction in mathematics. Learning Disability Quarterly, 12, 43–55. doi: 10.2307/1510251 First citation in articleCrossrefGoogle Scholar

  • * Greene, G. (1999). Mnemonic multiplication fact instruction for students with learning disabilities. Learning Disabilities Research and Practice, 14, 141–148. doi: 10.1207/sldrp1403_2 First citation in articleCrossrefGoogle Scholar

  • Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6, 107–128. First citation in articleCrossrefGoogle Scholar

  • Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1, 39–65. doi: 10.1002/jrsm.5 First citation in articleCrossrefGoogle Scholar

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70. First citation in articleGoogle Scholar

  • Ise, E., Dolle, K., Pixner, S., & Schulte-Körne, G. (2012). Effektive Förderung rechenschwacher Kinder – eine Metaanalyse [Effective interventions for children with mathematical difficulties – a meta-analysis]. Kindheit und Entwicklung, 21, 1–12. doi: 10.1026/0942-5403/a000083 First citation in articleLinkGoogle Scholar

  • Ise, E., & Schulte-Körne, G. (2013). Symptomatik, Diagnostik und Behandlung der Rechenstörung [Symptoms, diagnostics, and treatment of maths disorder]. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 41, 271–282. doi: 10.1024/1422-4917/a000241 First citation in articleLinkGoogle Scholar

  • * Jeltova, I., Birney, D., Fredine, N., Jarvin, L., Sternberg, R. J., & Grigorenko, E. L. (2011). Making instruction and assessment responsive to diverse students progress: Group-administered dynamic assessment in teaching mathematics. Journal of Learning Disabilities, 44, 381–395. doi: 10.1177/0022219411407868 First citation in articleCrossrefGoogle Scholar

  • * Käser, T., Busetto, A. G., Baschera, G.-M., Kohn, J., Kucian, K., von Aster, M., & Gross, M. (2012, June). Modelling and optimizing the process of learning mathematics. In S. A. CerriW. J. ClanceyG. PapadourakisK.-K. PanourgiaEds., Intelligent tutoring systems: Proceedings of the 11th International Conference, ITS 2012, Chania, Crete, Greece, June 14–18, 2012. Berlin, Germany: Springer. First citation in articleCrossrefGoogle Scholar

  • * Kroesbergen, E. H., & Van Luit, J. E. (2002). Teaching multiplication to low math performers: Guided versus structured instruction. Instructional Science, 30, 361–378. doi: 10.1023/A:1019880913714 First citation in articleCrossrefGoogle Scholar

  • Kroesbergen, E. H., & Van Luit, J. E. (2003). Mathematics interventions for children with special educational needs: A meta-analysis. Remedial and Special Education, 24, 97–114. doi: 10.1177/07419325030240020501 First citation in articleCrossrefGoogle Scholar

  • * Kroesbergen, E. H., & Van Luit, J. E. (2005). Constructivist mathematics education for students with mild mental retardation. European Journal of Special Needs Education, 20, 107–166. doi: 10.1080/0885625042000319115 First citation in articleCrossrefGoogle Scholar

  • * Kroesbergen, E. H., Van Luit, J. E., & Maas, C. J. M. (2004). Effectiveness of explicit and constructivist mathematics instruction for low-achieving students in The Netherlands. The Elementary School Journal, 104, 233–251. doi: 10.1086/499751 First citation in articleCrossrefGoogle Scholar

  • * Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., … von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782–795. doi: 10.1016/j.neuroimage.2011.01.070 First citation in articleCrossrefGoogle Scholar

  • * Kuhl, J., Sinner, D., & Ennemoser, M. (2012). Training quantity-number competencies students with intellectual disabilities. Journal of Cognitive Education and Psychology, 11, 128–142. doi: 10.1891/1945-8959.11.2.128 First citation in articleCrossrefGoogle Scholar

  • Kuhn, J.-T., Raddatz, J., Holling, H., & Dobel, C. (2013). Dyskalkulie vs. Rechenschwäche: Basisnumerische Verarbeitung in der Grundschule [Dyscalculia vs. mathematical difficulties: Basic numerical processing in elementary school]. Lernen und Lernstörungen, 2, 229–247. doi: 10.1024/2235-0977/a000044 First citation in articleLinkGoogle Scholar

  • * Lambert, K., & Spinath, B. (2014). Do we need a special intervention program for children with mathematical learning disabilities or is private tutoring sufficient? Journal of Educational Research online, 6, 68–93. First citation in articleGoogle Scholar

  • Landerl, K., & Kaufmann, L. (2008). Dyskalkulie. Modelle, Diagnostik, Intervention [Dyscalculia: Models, diagnosis, intervention]. Munich, Germany: Ernst Reinhardt. First citation in articleGoogle Scholar

  • * Lee, J. W. (1992). The effectiveness of a novel direct instructional approach on math word problem solving skills of elementary students with learning disabilities. (Unpublished dissertation). Ohio State University First citation in articleGoogle Scholar

  • * Lenhard, A., Lenhard, W., Schug, M., & Kowalski, A. (2011). Computerbasierte Mathematikförderung mit den “Rechenspielen mit Elfe und Mathis I”. Vorstellung und Evaluation eines Computerprogramms für Erst- bis Drittklässler [Computer-based enhancement of mathematics skills using “Maths games with Elfe and Mathis I”. Introduction and evaluation of software for first to third grade pupils]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43, 79–88. doi: 10.1026/0049-8637/a000037 First citation in articleLinkGoogle Scholar

  • Möller, K., Fischer, U., Cress, U., & Nuerk, H.-C. (2012). Diagnostics and intervention in developmental dyscalculia: Current issues and novel perspectives. In Z. BreznitzO. RubinstenV. J. MolfeseD. L. MolfeseEds., Reading, writing, mathematics and the developing brain: Listening to many voices (pp. 233–294). New York, NY: Springer. First citation in articleCrossrefGoogle Scholar

  • Morris, S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organizational Research Methods, 11, 364–386. doi: 10.1177/1094428106291059 First citation in articleCrossrefGoogle Scholar

  • * Omizo, M. M., Cubberly, W. E., & Cubberly, R. D. (1985). Modelling techniques, perceptions of self-efficacy, and arithmetic achievement among learning disabled children. The Exceptional Child, 32, 99–105. doi: 10.1080/0156655850320206 First citation in articleCrossrefGoogle Scholar

  • * Powell, S. R., & Fuchs, L. S. (2010). Contribution of equal-sign instruction beyond word-problem tutoring for third-grade students with mathematics difficulty. Journal of Educational Psychology, 102, 381–394. doi: 10.1037/a0018447 First citation in articleCrossrefGoogle Scholar

  • * Powell, S. R., Fuchs, L. S., Fuchs, D., Cirino, P. T., & Fletcher, J. M. (2009). Effects of fact retrieval tutoring on third-grade students with math difficulties with and without reading difficulties. Learning Disabilities Research and Practice, 24, 1–11. doi: 10.1111/j.1540-5826.2008.01272.x First citation in articleCrossrefGoogle Scholar

  • Raudenbush, S. (2009). Random effects models. In H. CooperL. HedgesJ. ValentineEds., The handbook of research synthesis and meta-analysis (pp. 295–315). New York, NY: Russell Sage Foundation. First citation in articleGoogle Scholar

  • R Core Team . (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. First citation in articleGoogle Scholar

  • * Ross, P. A., & Braden, J. P. (1991). The effects of token reinforcement versus cognitive behavior modification on learning-disabled students’ math skills. Psychology in the Schools, 28, 247–255. doi: 10.1002/1520-6807(199107)28:3<247::AID-PITS2310280310>3.0.CO;2-E First citation in articleCrossrefGoogle Scholar

  • * Schoppek, W. (2012). Dynamic task selection in learning arithmetic: The role of learner control and adaptation based on a hierarchy of skills. Zeitschrift für Pädagogische Psychologie, 26, 43–55. doi: 10.1024/1010-0652/a000059 First citation in articleLinkGoogle Scholar

  • * Schoppek, W., & Tulis, M. (2010). Enhancing arithmetic and word-problem solving skills efficiently by individualized computer-assisted practice. The Journal of Educational Research, 103, 239–252. doi: 10.1080/00220670903382962 First citation in articleCrossrefGoogle Scholar

  • * Shiah, R.-L., Mastropieri, M. A., Scruggs, T. E., & Fulk, B. J. M. (1994). The effects of computer-assisted instruction on the mathematical problem solving of students with learning disabilities. Exceptionality, 5, 131–161. doi: 10.1207/s15327035ex0503_2 First citation in articleCrossrefGoogle Scholar

  • * Stellingwerf, B. P., & van Lieshout, E. C. (1999). Manipulatives and number sentences in computer aided arithmetic word problem solving. Instructional Science, 27, 459–476. doi: 10.1023/A:1003647807868 First citation in articleCrossrefGoogle Scholar

  • * Topping, K. J., Miller, D., Murray, P., Henderson, S., Fortuna, C., & Colin, N. (2011). Outcomes in a randomised controlled trial of mathematics tutoring. Educational Research, 53, 51–63. doi: 10.1080/00131881.2011.552239 First citation in articleCrossrefGoogle Scholar

  • * Tournaki, N. (2003). The differential effects of teaching addition through strategy instruction versus drill and practice to students with and without learning disabilities. Journal of Learning Disabilities, 36, 449–458. doi: 10.1177/00222194030360050601 First citation in articleCrossrefGoogle Scholar

  • Valentine, J. C., & Cooper, H. (2008). A systematic and transparent approach for assessing the methodological quality of intervention effectiveness research: The study design and implementation assessment device (study DIAD). Psychological Methods, 13, 130–149. doi: 10.1037/1082-989X.13.2.130 First citation in articleCrossrefGoogle Scholar

  • * VanDerHeyden, A., Laughlin, T. M., Algina, J., & Snyder, P. (2012). Randomized evaluation of a supplemental grade-wide mathematics intervention. American Educational Research Journal, 49, 1251–1284. doi: 10.3102/0002831212462736 First citation in articleCrossrefGoogle Scholar

  • * Van Luit, J. E., & Naglieri, J. A. (1999). Effectiveness of the MASTER program for teaching special children multiplication and division. Journal of Learning Disabilities, 32, 98–107. doi: 10.1177/002221949903200201 First citation in articleCrossrefGoogle Scholar

  • Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. First citation in articleCrossrefGoogle Scholar

  • World Health Organization . (2005). ICD-10. International statistical classification of diseases and related health problems, 10th revision; Chapter V: Mental and behavioural disorders (F81.2). Geneva, Switzerland: Author. First citation in articleGoogle Scholar