Skip to main content
Review Article

Avoiding Methodological Biases in Meta-Analysis

Use of Online Versus Offline Individual Participant Data (IPD) in Educational Psychology

Published Online:https://doi.org/10.1027/2151-2604/a000251

Abstract. Individual participant data (IPD) meta-analysis is the gold standard of meta-analyses. This paper points out several advantages of IPD meta-analysis over classical meta-analysis, such as avoiding aggregation bias (e.g., ecological fallacy or Simpson’s paradox) and shows how its two main disadvantages (time and cost) can be overcome through Internet-based research. Ideally, we recommend carrying out IPD meta-analyses that consider online versus offline data gathering processes and examine data quality. Through a comprehensive literature search, we investigated whether IPD meta-analyses published in the field of educational psychology already follow these recommendations; this was not the case. For this reason, the paper demonstrates characteristics of ideal meta-analysis on teachers’ judgment accuracy and links it to recent meta-analyses on that topic. The recommendations are important for meta-analysis researchers and for readers and reviewers of meta-analyses. Our paper is also relevant to current discussions within the psychological community on study replication.

References

  • Albarracín, D. (2015). Editorial. Psychological Bulletin, 141, 1–5. First citation in articleCrossrefGoogle Scholar

  • Alker, H. S. (1969). A typology of ecological fallacies. In M. DoganS. RokanEds., Quantitative Ecological Analysis in the Social Sciences (pp. 69–86). Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Athanasou, J. A. & Cooksey, R. W. (2001). Judgment of factors influencing interest: An Australian study. Journal of Vocational Education Research, 26, 1–13. First citation in articleCrossrefGoogle Scholar

  • Batinic B.Reips U.-D.Bošnjak M.Eds.. (2002). Online Social Sciences. Seattle, WA: Hogrefe & Huber. First citation in articleGoogle Scholar

  • Berlin, J. A., Santanna, J., Schmid, C. H., Szczech, L. A. & Feldman, H. I. (2002). Individual patient- versus group-level data meta-regressions for the investigation of treatment effect modifiers: Ecological bias rears its ugly head. Statistics in Medicine, 31, 371–387. doi: 10.1002/sim.1023 First citation in articleCrossrefGoogle Scholar

  • Bernard, R. M. (2014). Things I have learned about meta-analysis since 1990: Reducing bias in search of “The Big Picture”. Canadian Journal of Learning and Instruction, 40, 17. First citation in articleGoogle Scholar

  • Bickel, P. J., Hammel, E. A. & O’Connell, J. W. (1975). Sex bias in graduate admission: Data from Berkeley. Science, 187, 398–404. First citation in articleCrossrefGoogle Scholar

  • Bruder, M., Göritz, A. S., Reips, U.-D. & Gebhard, R. K. (2014). Ein national gefördertes Onlinelabor als Infrastruktur für die psychologische Forschung [A nationally funded online laboratory as infrastructure for psychological research]. Psychologische Rundschau, 65, 75–85. doi: 10.1026/0033-3042/a000198 First citation in articleLinkGoogle Scholar

  • Campbell, D. T. & Fiske, D. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81–105. First citation in articleCrossrefGoogle Scholar

  • Carroll, K. (1975). Experimental evidence of dietary factors and hormone-dependent cancers. Cancer Research, 35, 3374–3383. First citation in articleGoogle Scholar

  • Chalmers, I. (1993). The Cochrane collaboration: Preparing, maintaining, and disseminating systematic reviews of the effects of health care. Annals of the New York Academy of Sciences, 703, 156–163. First citation in articleCrossrefGoogle Scholar

  • Claxton, S. E., DeLuca, H. K. & van Dulmen, M. H. (2015). The association between alcohol use and engagement in casual sexual relationships and experiences: A meta-analytical review of non-experimental studies. Archives of Sexual Behavior, 44, 837–856. First citation in articleCrossrefGoogle Scholar

  • Cooper, H. & Patall, E. A. (2009). The relative benefits of meta-analysis conducted with individual participant data versus aggregated data. Psychological Methods, 14, 165–176. First citation in articleCrossrefGoogle Scholar

  • Curran, P. J. & Hussong, A. M. (2009). Integrative data analysis: The simultaneous analysis of multiple data sets. Psychological Methods, 14, 81–1000. First citation in articleCrossrefGoogle Scholar

  • Debray, T. P. A., Moons, K. G. M., van Valkenhoef, G., Efthimiou, O., Hummel, N., Groenwold, R. H. H., … the getReal methods review group. (2015). Get real in individual participant data (IPD) meta-analysis: A review of the methodology. Research Synthesis Methods, 6, 293–309. doi: 10.1002/jrsm.1160 First citation in articleCrossrefGoogle Scholar

  • Dodou, D. & De Winter, J. C. F. (2014). Social desirability is the same in offline, online, and paper surveys: A meta-analysis. Computers in Human Behavior, 36, 487–495. First citation in articleCrossrefGoogle Scholar

  • Dyssegaard, C. B., Egeberg, J. H., Sommersel, H. B., Steenberg, K. & Vestergaard, S. (2015). A systematic review of the impact of multiple language teaching, prior language experience and acquisition order on student’s language proficiency in primary and secondary school. Copenhagen, Denmark: Danish Clearinghouse for Educational Research, Department of Education, Aarhus University. First citation in articleGoogle Scholar

  • Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3–8. First citation in articleCrossrefGoogle Scholar

  • Glass, G. V. (2016). One hundred years of research: Prudent aspirations. Educational Researcher, 45, 69–72. doi: 10.3102/0013189X16639026 First citation in articleCrossrefGoogle Scholar

  • Goldstein, H., Yang, M., Omar, R., Turner, R. & Thompson, S. (2000). Meta-analysis using multilevel models with an application to the study of class size effects. Applied Statistics, 49, 399–412. First citation in articleGoogle Scholar

  • Hammond K. R.Stewart T. R.Eds.. (2001). The essential Brunswik: Beginnings, explications, applications. Oxford, UK: University Press. First citation in articleGoogle Scholar

  • Hanushek, E., Rivkin, S. & Taylor, L. (1996). Aggregation and the estimated effects of school resources. Review of Economics and Statistics, 78, 611–627. First citation in articleCrossrefGoogle Scholar

  • Hattie, J. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London, UK: Routledge. First citation in articleGoogle Scholar

  • Hoge, D. H. & Coladarci, T. (1989). Judgments of academic achievement: A review of literature. Review of Educational Research, 59, 297–313. doi: 10.3102/00346543059003297 First citation in articleCrossrefGoogle Scholar

  • Ioannidis, J. P. A. (2010). Meta-research: The art of getting it wrong. Research Synthesis Methods, 1, 169–184. doi: 10.1002/jrsm.19 First citation in articleCrossrefGoogle Scholar

  • Ioannidis, J. P. A., Rosenberg, P. S., Goedert, J. & O’Brien, T. R. (2002). Commentary: Meta-analysis of individual participants’ data in genetic epidemiology. American Journal of Epidemiology, 156, 204–210. First citation in articleCrossrefGoogle Scholar

  • Karelaia, N. & Hogarth, R. (2008). Determinants of linear judgment: A meta-analysis of lens studies. Psychological Bulletin, 134, 404–426. doi: 10.1037/0033-2909.134.3.404 First citation in articleCrossrefGoogle Scholar

  • Kaufmann, E. (2010). Flesh on the bones: A critical meta-analytic perspective on lens studies. Mannheim, Germany: MADOC. First citation in articleGoogle Scholar

  • Kaufmann, E. (2016). Teachers as judges: A psychometric (re)evaluation of teacher’s judgment accuracy [Working paper]. Zurich, Switzerland: University of Zurich. First citation in articleGoogle Scholar

  • Kaufmann, E. & Athanasou, J. A. (2009). A meta-analysis of judgment achievement defined by the lens model equation. Swiss Journal of Psychology, 68, 99–112. doi: 10.1024/1421-0185.68.2.99 First citation in articleLinkGoogle Scholar

  • Kaufmann, E. & Reips, U.-D. (2008). Internet-basierte Messung Sozialer Erwünschtheit: Theoretische Grundlagen und Experimentelle Untersuchung [Internet-based measurement of social desirability]. Saarbrücken, Germany: VDM Verlag Dr. Müller. First citation in articleGoogle Scholar

  • Kaufmann, E., Reips, U.-D. & Wittmann, W. W. (2013). A critical meta-analysis of Lens Model studies in human judgment and decision-making. PLoS One, 8, e83528. doi: 10.1371/journal.pone.0083528 First citation in articleCrossrefGoogle Scholar

  • Lau, J., Ioannidis, J. P. A. & Schmid, C. H. (1997). Quantitative synthesis in systematic reviews. Annals of Internal Medicine, 127, 820–826. First citation in articleCrossrefGoogle Scholar

  • Lipsey, M. W. & Wilson, D. B. (1993). The efficacy of psychological, educational, and behavioral treatment: Confirmation from meta-analysis. The American Psychologist, 48, 1181–1209. First citation in articleCrossrefGoogle Scholar

  • Lyman, G. H. & Kuderer, N. M. (2005). The strengths and limitations of meta-analyses based on aggregate data. BMC Medical Research Methodology, 5, 14. doi: 10.1186/1471-2288-5-14 First citation in articleCrossrefGoogle Scholar

  • Mangan, M. & Reips, U.-D. (2007). Sleep, sex, and the Web: Surveying the difficult-to-reach clinical population suffering from sexsomnia. Behavior Research Methods, 39, 233–236. First citation in articleCrossrefGoogle Scholar

  • Moffitt, R. (1996). Symposium on school quality and educational outcomes. Review of Economics and Statistics, 78, 559–561. First citation in articleCrossrefGoogle Scholar

  • Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349, 943. doi: 10.1126/science.aac4716 First citation in articleCrossrefGoogle Scholar

  • Pigott, T., Williams, R. & Polanin, J. (2012). Combining individual participant and aggregated data in a meta-analysis with correlational studies. Research Synthesis Methods, 3, 257–268. First citation in articleCrossrefGoogle Scholar

  • Polanin, J. R., Maynard, B. R. & Dell, N. A. (2016). Overviews in educational research: A systematic review and analysis. Review of Educational Research. Advance online publication. doi: 10.3102/0034654316631117 First citation in articleCrossrefGoogle Scholar

  • Reips, U.-D. (2002). Standards for Internet-based experimenting. Experimental Psychology, 49, 243–256. First citation in articleLinkGoogle Scholar

  • Reips, U.-D. (2006). Web-based methods. In M. EidE. DienerEds., Handbook of multimethod measurement in psychology (pp. 73–85). Washington, DC: American Psychological Association. doi: 10.1037/11383-006 First citation in articleCrossrefGoogle Scholar

  • Reips, U.-D. (2008). How Internet-mediated research changes science. In A. BarakEd., Psychological aspects of cyberspace: Theory, research, applications (pp. 268–294). Cambridge, UK: Cambridge University Press. First citation in articleGoogle Scholar

  • Reips U.-D.Bošnjak M.Eds.. (2001). Dimensions of internet science. Lengerich, Germany: Pabst. First citation in articleGoogle Scholar

  • Reips, U.-D., Buchanan, T., Krantz, J. H. & McGraw, K. (2015). Methodological challenges in the use of the Internet for scientific research: Ten solutions and recommendations. Studia Psychologica, Advance online publication First citation in articleGoogle Scholar

  • Riley, R. D., Simmonds, M. C. & Look, M. P. (2007). Evidence synthesis combining individual patient data and aggregate data: A systematic review identified current practice and possible methods. Journal of Clinical Epidemiology, 60, 431–439. doi: S0895-4356(06)00403-3 First citation in articleCrossrefGoogle Scholar

  • Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15, 351–357. First citation in articleCrossrefGoogle Scholar

  • Rosenthal, R. & DiMatteo, M. R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. Annual Review of Psychology, 52, 59–82. doi: 10.1146/annurev.psych.52.1.59 First citation in articleCrossrefGoogle Scholar

  • Rothstein, H. R. (2008). Publication bias as a threat to the validity of meta-analytic results. Journal of Experimental Criminology, 4, 61–81. First citation in articleCrossrefGoogle Scholar

  • Schmid, C. H., Stark, P. C., Berlin, J. A., Landais, P. & Lau, J. (2004). Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. Journal of Clinical Epidemiology, 57, 683–697. First citation in articleCrossrefGoogle Scholar

  • Schmidt, F. L. & Hunter, J. E. (2014). Methods of meta-analysis: Correcting error and bias in research findings. Los Angeles, CA: Sage. First citation in articleGoogle Scholar

  • Schmidt, F. L. & Oh, I.-S. (2016). The crisis of confidence in research findings in Psychology: Is lack of replication the real problem? Or is it something else? Archives of Scientific Psychology, 4, 32–37. doi: 10.1037/arc0000029 First citation in articleCrossrefGoogle Scholar

  • Shadish, W. R. (2015). Introduction to the special issue on the origins of modern meta-analysis. Research Synthesis Methods, 6, 219–220. doi: 10.1002/jrsm.1148 First citation in articleCrossrefGoogle Scholar

  • Simmonds, M., Stewart, G. & Stewart, L. (2015). A decade of individual participant data meta-analyses: A review of current practice. Contemporary Clinical Trials, 45, 76–83. doi: 10.1016/j.cct.2015.06.012 First citation in articleCrossrefGoogle Scholar

  • Simmonds, M. C., Higgins, J. P. T., Stewart, L. S., Tierney, J. F., Clarke, M. J. & Thompson, S. G. (2005). Meta-analysis of individual patient data from randomized trials: A review of methods used in practice. Clinical Trials, 2, 209–217. doi: 10.1191/1740774505cn087oa First citation in articleCrossrefGoogle Scholar

  • Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Series B, 13, 238–241. First citation in articleGoogle Scholar

  • Sirin, S. R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Education Research, 75, 417–453. First citation in articleCrossrefGoogle Scholar

  • Stewart, L. A., Clarke, M., Rovers, M., Riley, R. D., Simmonds, M., Stewart, G. & Tierney, J. F. (2015). Preferred reporting items for a systematic review and meta-analysis of individual participant data: The PRISMA-IPD statement. Journal of the American Medical Association (JAMA), 313, 1657–1665. doi: 10.1001/jama.2015.3656 First citation in articleCrossrefGoogle Scholar

  • Stewart, L. A. & Parmar, M. K. B. (1993). Meta-analysis of the literature or of individual patient data: Is there a difference? The Lancet, 341, 418–422. First citation in articleCrossrefGoogle Scholar

  • Stewart, L. A. & Tierney, J. F. (2002). To IPD or not to IPD? Evaluation & the Health Professions, 25, 76–97. First citation in articleCrossrefGoogle Scholar

  • Stöber, J. (1999). Die Soziale-Erwünschtheits-Skala-17 (SES-17): Entwicklung und erste Befunde zu Reliabilität und Validität [The Social Desirability Scale-17 (SDS-17): Development and first findings on reliability and validity]. Diagnostica, 45, 173–177. doi: 10.1026/0012-1924.45.4.173 First citation in articleLinkGoogle Scholar

  • Südkamp, A., Kaiser, J. & Möller, J. (2012). Accuracy of teachers’ judgments of students’ academic achievement: A meta-analysis. Journal of Educational Psychology, 104, 743–763. doi: 10.1037/a0027627 First citation in articleCrossrefGoogle Scholar

  • Sutton, A. J., Kendrick, D. & Coupland, C. A. C. (2008). Meta-analysis of individual- and aggregate-level data. Statistics in Medicine, 27, 651–669. doi: 10.1002/sim.2916 First citation in articleCrossrefGoogle Scholar

  • Televantou, I., Marsh, H. W., Kyriakidies, L., Nagengast, B., Fletcher, J. & Malmberg, L.-E. (2015). Phantom effects in school composition research: Consequences of failure to control biases due to measurement error in traditional multilevel models. School Effectiveness and School Improvement, 26, 75–101. First citation in articleCrossrefGoogle Scholar

  • Tierney, J. F., Vale, C., Riley, R., Smith, C. T., Stewart, L., Clarke, M. & Rovers, M. (2015). Individual Participant Data (IPD) meta-analysis of randomized controlled trials: Guidance on their use. PLoS Medicine, 12, e1001855. doi: 10.1371/journal.pmed.1001855 First citation in articleCrossrefGoogle Scholar

  • Van den Heuvel, E. R. & Griffith, L. E. (2016). Statistical harmonization methods in Individual Participants Data meta-analysis are highly needed. Biometrics & Biostatistics International Journal, 3, 00064. doi: 10.15406/bbij.2016.03.00064 First citation in articleCrossrefGoogle Scholar

  • Viechtbauer, W. (2007). Random-effects models and moderator analyses in meta-analysis. Zeitschrift für Psychologie/Journal of Psychology, 215, 104–121. First citation in articleLinkGoogle Scholar

  • Viechtbauer, W. & Chueng, M. W.-L. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1, 112–125. doi: 10.1002/jrsm.11 First citation in articleCrossrefGoogle Scholar