Skip to main content
Originalia/Original Articles

Concept Maps wirkungsvoll als Strukturierungshilfen einsetzen

Welche Rolle spielt die Selbstkonstruktion?

Published Online:https://doi.org/10.1024/1010-0652.20.3.175

In dieser Studie wurden die Effekte unterschiedlich stark strukturierter Concept Maps für das Verständnis naturwissenschaftlicher Textinhalte und für das selbstständige Erstellen von Concept Maps in einem neuen Inhaltsgebiet bei 46 jungen Erwachsenen untersucht. Wir nahmen an, dass eine Balance zwischen Selbstkonstruktion und vorgegebener Strukturierung bei Lernenden sowohl die Wahrnehmung der inhaltlichen Zusammenhänge als auch der Anforderungen der Strategie des Concept Mappings unterstützen würde. Im ersten Untersuchungsteil erstellten Lernende entweder Concept Maps selbst aus den Textinhalten, arbeiteten mit erweiterbaren Lücken-Concept Maps oder nutzten vorgegebene Experten-Concept Maps zum Textverständnis. Im zweiten Untersuchungsteil erstellten Teilnehmer aller drei Gruppen selbstständig ein Concept Map in einem neuen Inhaltsgebiet. Gemäß unseren Annahmen war die strukturelle Unterstützung bei den Experten-Concept Maps bzw. Lücken-Concept Maps für das inhaltliche Verständnis von Vorteil, während für die selbstständige Strategieanwendung die vorangegangene eigene Konstruktionsaktivität in Form von selbstkonstruierten Concept Maps bzw. Lücken-Concept Maps ausschlaggebend war. Eine Balance zwischen Selbstkonstruktion und Strukturierung in der Lücken-Concept Map führte also zu einer Aufmerksamkeitslenkung sowohl auf wesentliche Inhalte als auch auf Anforderungen der Visualisierungsstrategie.


Using Concept Maps Effectively as Structural Supports: The Role of Self-Construction

In this study with 46 young adults, we investigated effects of differently structured concept maps for students' comprehension of science texts and for their self-construction of concept maps in a new domain. We assumed that a balance of self-construction and structuring would direct learners' attention to both content relations and affordances and constraints of the strategy of concept mapping. In the first phase of the investigation, learners either constructed concept maps themselves from texts, worked with fill-in-the-gap concept maps, or used expert concept maps for text comprehension. In the second phase, participants of all groups constructed concept maps in a new domain. As hypothesized, the structural support in expert concept maps and fill-in-the-gap concept maps especially furthered content understanding, whereas for the application of the strategy of concept mapping, the active construction either with fill-in-the-gap concept maps or with self-constructed concept maps was especially important. A balance of self-construction and structural support, as given in the fill-in-the-gap concept map, thus led to a focusing of students' attention on both represented content and affordances and constraints of the visualization strategy.

References

  • Chang, K. , Sung, Y. , Chen, I. (2002). The effect of concept mapping to enhance text comprehension and summarization. The Journal of Experimental Education, 71, 5– 23 First citation in articleCrossrefGoogle Scholar

  • Cobb, P. (1994). Where is the mind? Constructivist and sociocultural perspectives on mathematical development. Educational Researcher, 23, 13– 20 First citation in articleCrossrefGoogle Scholar

  • Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9, 343– 363 First citation in articleCrossrefGoogle Scholar

  • Fischer, F. , Mandl, H. (2000). Strategiemodellierung mit Expertenmaps. In H. Mandl & F. Fischer (Hrsg.), Wissen sichtbar machen: Wissensmanagement mit Mapping-Techniken (S. 37- 54). Göttingen: Hogrefe First citation in articleGoogle Scholar

  • Gerstenmaier, J. , Mandl, H. (1995). Wissenserwerb unter konstruktivistischer Perspektive. Zeitschrift für Pädagogik, 41, 867– 887 First citation in articleGoogle Scholar

  • Gravemeijer, K. , Stephan, M. (2003). Emergent models as an instructional design heuristic. In K. Gravemeijer, R. Lehrer, B. van Oers & L. Verschaffel (Eds.), Symbolizing, modeling, and tool use in mathematics education (pp. 145-169). Dordrecht: Kluwer First citation in articleGoogle Scholar

  • Greeno, J. , Smith, D. , Moore, J. (1993). Transfer of situated learning. In D. Detterman & R. Sternberg (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 99-167). Norwood, NJ: Ablex Publishing Corp First citation in articleGoogle Scholar

  • Hardy, I. , Jonen, A. , Möller, K. , Stern, E. (2004). Die Integration von Repräsentationsformen in den Sachunterricht der Grundschule. In J. Doll & M. Prenzel (Hrsg.), Bildungsqualität von Schule: Lehrerprofessionalisierung, Unterrichtsentwicklung und Schülerförderung als Strategien der Qualitätsverbesserung (S. 267-283). Münster: Waxmann First citation in articleGoogle Scholar

  • Hogan, K. , Pressley, M. (1997). Scaffolding scientific competencies within classroom communities of inquiry. In K. Hogan & M. Pressley (Eds.), Scaffolding student learning: Instructional approaches and issues (pp. 74-107). Louiseville, Quebec: Brookline Books First citation in articleGoogle Scholar

  • Jüngst, K.-L. (1998). Lehren und Lernen mit Begriffsnetzdarstellungen . Butzbach: Afra First citation in articleGoogle Scholar

  • Jüngst, K.-L. , Strittmatter, P. (1995). Wissensstrukturdarstellung: Theoretische Ansätze und praktische Relevanz. Unterrichtswissenschaft, 23, 194– 207 First citation in articleGoogle Scholar

  • Mandl, H. , Fischer, F. (2000). Mapping-Techniken und Begriffsnetze in Lern- und Kooperationsprozessen. In H. Mandl & F. Fischer (Hrsg.), Wissen sichtbar machen: Wissensmanagement mit Mapping-Techniken (S. 3-12). Göttingen: Hogrefe First citation in articleGoogle Scholar

  • Mayer, R. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59, 14– 19 First citation in articleCrossrefGoogle Scholar

  • McCagg, E. , Dansereau, D. (1991). A convergent paradigm for examining knowledge mapping as a learning strategy. Journal of Educational Research, 84, 317– 324 First citation in articleCrossrefGoogle Scholar

  • Nicoll, G. , Francisco, J. , Nakhleh, M. (2001a). An investigation of the value of using concept maps in general chemistry. Journal of Chemical Education, 78, 1111– 1117 First citation in articleCrossrefGoogle Scholar

  • Nicoll, G. , Francisco, J. , Nakhleh, M. (2001b). A three-tier system for assessing concept map links: A methodological study. International Journal of Science Education, 23, 863– 865 First citation in articleCrossrefGoogle Scholar

  • Novak, J. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27, 937– 949 First citation in articleCrossrefGoogle Scholar

  • Novak, J. , Gowin, D. (1984). Learning how to learn . Cambridge: Cambridge University Press First citation in articleCrossrefGoogle Scholar

  • Pea, R. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. The Journal of the Learning Sciences, 13, 423– 451 First citation in articleCrossrefGoogle Scholar

  • Ploetzner, R. , Fehse, E. , Kneser, C. , Spada, H. (1999). Learning to relate qualitative and quantitative problem representations in a model-based setting for collaborative problems solving. The Journal of the Learning Sciences, 8, 177– 214 First citation in articleCrossrefGoogle Scholar

  • Reiser, B. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The Journal of the Learning Sciences, 13, 273– 304 First citation in articleCrossrefGoogle Scholar

  • Renkl, A. , Gruber, H. , Mandl, H. (1999). Situated learning in instructional settings: From euphoria to feasibility. In J. Bliss, R. Säljö & P. Light (Eds.), Learning sites: Social and technological resources for learning (pp. 101-109). Amsterdam: Pergamon First citation in articleGoogle Scholar

  • Roth, W. , McGinn, M. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68, 35– 59 First citation in articleCrossrefGoogle Scholar

  • Ruiz-Primo, M. , Schultz, S. , Li, M. , Shavelson, R. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Teaching, 38, 260– 278 First citation in articleCrossrefGoogle Scholar

  • Ruiz-Primo, M. , Shavelson, R. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33, 569– 600 First citation in articleCrossrefGoogle Scholar

  • Rye, J. , Rubba, P. (2002). Scoring concept maps: An expert map-based scheme weighted for relationships. School Science and Mathematics, 102, 33– 44 First citation in articleCrossrefGoogle Scholar

  • Schau, C. , Mattern, N. , Zeilik, M. , Teague, K. , Weber, R. (2001). Select-and-fill-in concept map scores as a measure of students' connected understanding of science. Educational & Psychological Measurement, 61, 136– 158 First citation in articleCrossrefGoogle Scholar

  • Schmid, R. , Telaro, G. (1990). Concept mapping as an instructional strategy for high school biology. Journal of Educational Research, 84, 78– 85 First citation in articleCrossrefGoogle Scholar

  • Schnotz, W. , Bannert, M. (1999). Einflüsse der Visualisierungsform auf die Konstruktion mentaler Modelle beim Text- und Bildverstehen. Zeitschrift für experimentelle Psychologie, 46, 217– 36 First citation in articleAbstractGoogle Scholar

  • Slotte, V. , Lonka, K. (1999). Spontaneous concept maps aiding the understanding of scientific concepts. International Journal of Science Education, 21, 515– 531 First citation in articleCrossrefGoogle Scholar

  • Stern, E. , Aprea, C. , Ebner, H. (2003). Improving cross-content transfer in text processing by means of active graphical representation. Learning and Instruction, 13, 191– 203 First citation in articleCrossrefGoogle Scholar

  • van Dijk, I. , van Oers, B. , Terwel, J. (2003). Providing or designing? Constructing models in primary maths education. Learning and Instruction, 13, 53– 72 First citation in articleCrossrefGoogle Scholar

  • van Dijk, I. , von Pers, B. , Terwel, J. , van den Eeden, P. (2003). Strategic learning in primary mathematics education: Effects of an experimental program in modelling. Education Research and Evaluation, 9, 161– 187 First citation in articleCrossrefGoogle Scholar

  • van Oers, B. (2003). The mathematization of young children's language. In K. Gravemeijer, R. Lehrer, B. van Oers & L. Verschaffel (Eds.), Symbolizing, modeling, and tool use in mathematics education (pp. 29-58). Dordrecht: Kluwer First citation in articleGoogle Scholar