Skip to main content
Übersichtsartikel

Exekutive Funktionen

Published Online:https://doi.org/10.1024/1016-264X.18.3.233

Zusammenfassung: In diesem Übersichts-Artikel wird eine Taxonomie exekutiver Funktionen auf der Basis neuropsychologischer Modelle vorgestellt, an der sich eine klinische Diagnostik orientieren kann. Unterschieden werden vier Regulationsebenen, kognitive Regulation, Aktivitätsregulation, emotionale Regulation und soziale Regulation, denen sich klinisch beobachtbare Phänomene bei Störungen exekutiver Funktionen zuordnen lassen. Schließlich werden die besonderen Probleme thematisiert, die sich bei der Diagnostik exekutiver Funktionen hinsichtlich ökologischer Validität, Konstruktvalidität, Reliabilität und anderer methodischer Kriterien stellen.


Executive Functions: Overview and Taxonomy

Abstract: This review article proposes a taxonomy of executive functions based on neuropsychological models. The goal is to present a multidimensional framework of executive functions and associated diagnostic paradigms which might guide the clinical neuropsychological assessment. The taxonomy comprises four levels of regulation - regulation of cognition, activity, emotion and social behaviour. Within this framework, clinical behavioural problems due to executive function deficits can be categorized. Finally, the methodological problems associated with the assessment of executive functions, such as ecological validity, construct validity, reliability and other aspects are discussed.

References

  • Ackermann, H., Ziegler, W. (1995). Akinetischer Mutismus - Eine Literaturübersicht. Fortschritte der Neurologie und Psychiatrie, 63, 59–67. First citation in articleCrossrefGoogle Scholar

  • Alvarez, J.A., Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16, 17–42. First citation in articleCrossrefGoogle Scholar

  • Anderson, P., Anderson, V., Garth, J. (2001). Assessment and development of organizational ability: The Rey Complex Figure Organizational Strategy Score (RCF-OSS). The Clinical Neuropsychologist, 15, 81–94. First citation in articleCrossrefGoogle Scholar

  • Aschenbrenner, S., Tucha, O., Lange, K.W. (2001). Regensburger Wortflüssigkeitstest, RWT. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Baddeley, A. (1986). Working memory. Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Baddeley, A. (2002). Fractionating the Central Executive. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 246-260). New York: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Baddeley, A., Wilson, B. (1988). Frontal amnesia and the dysexecutive syndrome. Brain & Cognition, 7, 212–230. First citation in articleCrossrefGoogle Scholar

  • Baldo, J.V., Shimamura, A.P., Delis, D.C., Kramer, .J,, Kaplan, E. (2001). Verbal and design fluency in patients with frontal lobe lesions. Journal of the International Neuropsychological Society, 7, 586–596. First citation in articleCrossrefGoogle Scholar

  • Bartl-Storck, C., Dörner, D. (2004). Der “kognitive Kern” der Neuropsychologie. In S. Lautenbacher & S. Gauggel (Hrsg.), Neuropsychologie psychischer Störungen (S. 43-66). Berlin: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Bechara, A., Damasio, A.R., Damasio, H., Anderson, S.W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15. First citation in articleCrossrefGoogle Scholar

  • Bechara, A., Damasio, H., Tranel, D., Anderson, S.W. (1998). Dissociation of working memory from decision making within the human prefrontal cortex. Journal of Neuroscience, 18, 428–437. First citation in articleCrossrefGoogle Scholar

  • Bechara, A., Tranel, D., Damasio, H. (2000). Characterization of the decision-making deficits of patients with ventromedial prefrontal cortex lesions. Brain, 123, 2189–2202. First citation in articleCrossrefGoogle Scholar

  • Bechara, A., Dolan, S., Denburg, N., Hindes, A., Anderson, S.W., Nathan, P.E. (2001). Decision-making deficits, linked to dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia, 39, 376–389. First citation in articleCrossrefGoogle Scholar

  • Bechara, A., Van Der Linden, M. (2005). Decision-making and impulse control after frontal lobe injuries. Current Opinion in Neurology, 18, 734–739. First citation in articleCrossrefGoogle Scholar

  • Bibby, H., McDonald, S.T. (2005). Theory of mind after traumatic brain injury. Neuropsychologia, 43, 99–114. First citation in articleCrossrefGoogle Scholar

  • Bird, C.M., Papadopoulou, K., Ricciardelli, P., Rossor, M.N., Cipolotti, L. (2004). Monitoring cognitive changes: Psychometric properties of six cognitive tests. The British Journal of Clinical Psychology, 43, 197–210. First citation in articleCrossrefGoogle Scholar

  • Blair, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences, 29, 109–25. First citation in articleCrossrefGoogle Scholar

  • Blumer, D., Benson, D.F. (1975). Personality changes with frontal and temporal lobe lesions. In D.F. Benson & D. Blumer (Eds.), Psychiatric aspects of neurological disease (pp. 151-170). New York: Grune & Stratton. First citation in articleGoogle Scholar

  • Brand, M., Kalbe, E., Kessler, J. (2002). Test zum kognitiven Schätzen, TKS. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Burgess, P. (1997). Theory and methodology in executive function research. In P. Rabbitt (Ed.), Methodology of frontal and executive function (pp. 81-116). Hove: Psychology Press. First citation in articleGoogle Scholar

  • Burgess, P.W. (2000). Strategy application disorder: The role of the frontal lobes in human multitasking. Psychological Research, 63, 279–288. First citation in articleCrossrefGoogle Scholar

  • Burgess, P.W., Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263–272. First citation in articleCrossrefGoogle Scholar

  • Burgess, P., Veitch, E., Costello, A., Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848–863. First citation in articleCrossrefGoogle Scholar

  • Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L.M., Dawson, D.R., Anderson, N.D., Gilbert, S.J., Dumontheil, I., Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12, 194–209. First citation in articleCrossrefGoogle Scholar

  • Burgess, P.W,, Gilbert, S.J., Okuda, J., Simons, J.S. (2006). Rostral prefrontal brain regions (Area 10): A gateway between inner thought and external world?. In N. Sebanz & W. Prinz (Eds.), Disorders of volition (pp. 383-396). Cambridge MA: MIT Press. First citation in articleGoogle Scholar

  • Cavedini, P., Riboldi, G., Keller, R., D'Annucci, A., Bellodi, L. (2002). Frontal lobe dysfunction in pathological gambling patients. Biological Psychiatry, 15, 334–341. First citation in articleCrossrefGoogle Scholar

  • Chaytor, N., Schmitter-Edgecombe, M., Burr, R. (2006). Improving the ecological validity of executive functioning assessment. Archives of Clinical Neuropsychology, 21, 217–227. First citation in articleCrossrefGoogle Scholar

  • Clark, L., Cools, R., Robbins, T.W. (2004). The neuropsychology of the ventral prefrontal cortex: Decision-making and reversal learning. Brain & Cognition, 55, 41–53. First citation in articleCrossrefGoogle Scholar

  • Cripe, L.I. (1996). The ecological validity of executive function testing. In R.J. Sbordone & C.J. Long (Eds.), Ecological validity of neuropsychological testing (pp. 171-202). Delray Beach: St. Lucie Press. First citation in articleGoogle Scholar

  • Damasio, .R. (1998). The somatic marker hypothesis and the possible functions of the prefrontal cortex. In A.C. Roberts, T.W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex. Executive and cognitive functions (pp. 36-50). Oxford: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S., Changeux, J.-P. (1997). A hierarchical neuronal network for planning behavior. Proceedings of the National Academy of Science, Neurobiology, 94, 13293–13298. First citation in articleCrossrefGoogle Scholar

  • Della Sala, S., MacPherson, S.E., Phillips, L.H., Sacco, L., Spinnler, H. (2004). The role of semantic knowledge in the cognitive estimation task. Evidence from Alzheimer's disease and healthy adult aging. Journal of Neurology, 251, 156–164. First citation in articleCrossrefGoogle Scholar

  • Denckla, M.B. (1996). A theory and model of executive function. In G.P. Lyons & N.A. Krasnegor (Eds), Attention, memory and executive function (pp. 263-278). Baltimore: Paul Brooks. First citation in articleGoogle Scholar

  • Drechsler, R. (1997). Sprachstörungen nach Schädelhirntrauma. Tübingen: Narr. First citation in articleGoogle Scholar

  • Duncan, J. (1995). Attention, intelligence, and the frontal lobes. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 721-733). Cambridge MA: MIT Press. First citation in articleGoogle Scholar

  • Duncan, J. (2005). Prefrontal cortex and Spearman's g. In J.Duncan, L. Phillips, & P. McLeod (Eds.), Measuring the mind: Speed, control and age (pp. 249-272). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Duncan, J., Emslie, H., Williams, P., Johnson, R., Freer, C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30, 257–303. First citation in articleCrossrefGoogle Scholar

  • Duncan, J., Johnson, R., Swales, M., Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function. Cognitive Psychology, 14, 713–741. First citation in articleGoogle Scholar

  • Daum, I., Schugens, M.M., Channon, S., Polkey, C.E., Gray, J.A. (1991). T-maze discrimination and reversal learning after unilateral temporal or frontal lobe lesions in man. Cortex, 27, 613–622. First citation in articleCrossrefGoogle Scholar

  • Elliott, R., Dolan, R.J., Frith, C. (2000). Dissociable functions in the medial and lateral orbitofrontal cortex: Evidence from human neuroimaging studies. Cerebral Cortex, 10, 308–317. First citation in articleCrossrefGoogle Scholar

  • Ernst, M., Grant, S.J., London, E.D., Contoreggi, C.S., Kimes, A.S., Spurgeon, L. (2003). Decision making in adolescents with behavior disorder and adults with substance abuse. American Journal of Psychiatry, 160, 33–40. First citation in articleCrossrefGoogle Scholar

  • Ernst, M., Paulus, M.P. (2005). Neurobiology of decision making: A selective review from a neurocognitive and clinical perspective. Biological Psychiatry, 58, 597–604. First citation in articleCrossrefGoogle Scholar

  • Eslinger, P.J. (1996). Conceptualizing, describing, and measuring components of executive function. A summary. In G.P. Lyons & N.A. Krasnegor (Eds.), Attention, memory and executive function (pp. 367-395). Baltimore: Paul Brooks. First citation in articleGoogle Scholar

  • Eslinger, P.J. (1998). Neurological and neuropsychological bases of empathy. European Neurology, 39, 193–199. First citation in articleCrossrefGoogle Scholar

  • Eslinger, P.J., Grattan, I., Geder, L. (1995). Impact of frontal lobe lesions on rehabilitation and recovery from acute brain injury. Neurorehabilitation, 5, 161–185. First citation in articleCrossrefGoogle Scholar

  • Fellows, L.K., Farah, M.J. (2005). Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cerebral Cortex, 15, 58–63. First citation in articleCrossrefGoogle Scholar

  • Fernandez-Duque, D., Baird, J.A., Posner, M.I. (2000). Executive attention and metacognitive regulation. Consciousness & Cognition, 9, 288–307. First citation in articleCrossrefGoogle Scholar

  • Ferstl, E.C., Guthke, T., von Cramon, D.Y. (2002). Text comprehension after brain injury: Left prefrontal lesions affect inference processes. Neuropsychology, 16, 292–308. First citation in articleCrossrefGoogle Scholar

  • Fletcher, P.C., Henson, R.N.A. (2001). Frontal lobes and human memory. Brain, 124, 849–881. First citation in articleCrossrefGoogle Scholar

  • Frith, U., Frith, C.D. (2003). Development and neurophysiology of mentalizing. Philosophical transactions of the Royal Society of London. Series B, 358, 459–473. First citation in articleCrossrefGoogle Scholar

  • Fine, C., Lumsden, J., Blair, R.J. (2001). Dissociation between “theory of mind” and executive functions in a patient with early left amygdala damage. Brain, 124, 287–298. First citation in articleCrossrefGoogle Scholar

  • Friedman, N.P., Miyake, A., Corley, R.P., Young, S.E., Defries, J.C., Hewitt, J.K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172–179. First citation in articleCrossrefGoogle Scholar

  • Fuster, J.M. (2002). Frontal lobes and cognitive development. Journal of Neurocytology, 31, 373–385. First citation in articleCrossrefGoogle Scholar

  • Gauggel, S. (2004). Neuropsychologie der Motivation. In S Lautenbacher & S. Gauggel (Hrsg.), Neuropsychologie psychischer Störungen (S. 66-89). Berlin: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Gehring, W.J., Fencsik, D.E. (2001). Functions of the medial frontal cortex in the processing of conflict and errors. The Journal of Neuroscience, 21, 9430–9437. First citation in articleGoogle Scholar

  • Gilboa, A., Alain, C., Stuss, D.T., Melo, B., Miller, S., Moscovitch, M. (2006). Mechanisms of spontaneous confabulations: A strategic retrieval account. Brain, 129, 1399–1414. First citation in articleCrossrefGoogle Scholar

  • Glindemann, R., von Cramon, D.Y. (1995). Kommunikationsstörungen bei Patienten mit Frontalhirnläsionen. Sprache Stimme Gehör, 19, 1–7. First citation in articleGoogle Scholar

  • Godbout, L., Grenier, M.C., Braun, C.M., Gagnon, S. (2005). Cognitive structure of executive deficits in patients with frontal lesions performing activities of daily living. Brain Injury, 19, 337–348. First citation in articleCrossrefGoogle Scholar

  • Goel, V., Grafman, J., Tajik, J., Gana, S., Danto, D. (1998). A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain, 120, 1805–1822. First citation in articleCrossrefGoogle Scholar

  • Goudriaan, A.E., Oosterlaan, J., de Beurs, E., van den Brink, W. (2005). Decision making in pathological gambling: A comparison between pathological gamblers, alcohol dependents, persons with Tourette syndrome, and normal controls. Cognitive Brain Research, 23, 137–151. First citation in articleCrossrefGoogle Scholar

  • Grafman, J. (1999). Experimental assessment of adult frontal lobe function. Frontal-subcortical circuits. In B.L. Miller & J.L. Cummings (Eds.), The human frontal lobes. Functions and disorders (pp. 321-348). New York: Guilford. First citation in articleGoogle Scholar

  • Grant, D.A., Berg, E.A. (1948). A behavioural analysis of degree of reinforcement and ease of shifting to new responses in a weigl - Type card sorting problem. Journal of Experimental Psychology, 38, 404–411. First citation in articleCrossrefGoogle Scholar

  • Gutbrod, K., Krouzel, C., Hofer, H., Muri, R., Perrig, W., Ptak, R. (2006). Decision-making in amnesia: Do advantageous decisions require conscious knowledge of previous behavioural choices?. Neuropsychologia, 44, 1315–1324. First citation in articleCrossrefGoogle Scholar

  • Happé, F., Mahli, G.S., Checkley, S. (2001). Acquired mind-blindedness following frontal lobe surgery? A single case study of impaired theory of mind in a patient with stereotactic anterior capsulotomy. Neuropsychologia, 39, 83–90. First citation in articleCrossrefGoogle Scholar

  • Happé, F. (2003). Theory of mind and the self. Annals of the New York Academy of Science, 1001, 134–144. First citation in articleCrossrefGoogle Scholar

  • Hazy, T.E., Frank, M.J., O'Reilly, R.C. (2007). Toward an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London B: Biological Sciences, Epub ahead of print, . First citation in articleGoogle Scholar

  • Henry, J.D., Phillips, L.H., Crawford, J.H., Ietswaart, M., Summers, F. (2006). Theory of mind following traumatic brain injury: The role of emotion recognition and executive dysfunction. Neuropsychologia, 44, 1623–1628. First citation in articleCrossrefGoogle Scholar

  • Henry, J.D., Crawford, J.R. (2004). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology, 18, 284–295. First citation in articleCrossrefGoogle Scholar

  • Heyder, K., Suchan, B., Daum, I. (2004). Cortico-subcortical contributions to executive control. Acta Psychologica, 115, 271–289. First citation in articleCrossrefGoogle Scholar

  • Hynes, C.A., Baird, A.A., Grafton, S.T. (2006). Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking. Neuropsychologia, 44, 374–383. First citation in articleCrossrefGoogle Scholar

  • Janowsky, J.S., Shimamura, A.P., Squire, L.R. (1989). Source memory impairments in patients with frontal lobe lesions. Neuropsychologia, 27, 1043–1056. First citation in articleCrossrefGoogle Scholar

  • Jonides, J., Badre, D., Curtis, C., Thompson-Schill, S.L., Smith, E.E. (2002). Mechanisms of conflict resolution in prefrontal cortex. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 232-245). New York: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Karnath, H.O., Wallesch, C.W., Zimmermann, P. (1991). Mental planning and anticipatory responses with acute and chronic frontal lobe lesions: A comparison of maze performance in routine and nonroutine situations. Neuropsychologia, 29, 271–290. First citation in articleCrossrefGoogle Scholar

  • Keil, K., Baldo, J., Kaplan, E., Kramer, J., Delis, D.C. (2005). Role of frontal cortex in inferential reasoning: evidence from the word context test. Journal of the International Neuropsychological Society, 11, 426–433. First citation in articleGoogle Scholar

  • Kerr, A., Zelazo, P.D. (2004). Development of “hot” executive function: The children's gambling task. Brain & Cognition, 55, 148–157. First citation in articleCrossrefGoogle Scholar

  • Kimberg, D.Y., Farah, M.J. (1993). A unified account of cognitive impairments following frontal lobe damage: The role of working memory in complex, organized behavior. Journal of Experimental Psychology, General, 122, 411–428. First citation in articleCrossrefGoogle Scholar

  • Krawczyk, D.C. (2002). Contribution of the prefrontal cortex to the neural basis of human decision making. Neuroscience and Biobehavioral Reviews, 26, 631–664. First citation in articleCrossrefGoogle Scholar

  • Kingery, L.R., Schretlen, D.J., Sateri, S., Langley, L.K., Marano, N.C., Meyer, S.M. (2006). Interrater and test-retest reliability of a fixed condition design fluency test. Clinical Neuropsychology, 20, 729–740. First citation in articleCrossrefGoogle Scholar

  • Laplane, D., Dubois, B. (2001). Auto-activation deficit: A basal ganglia related syndrome. Movement Disorder, 16, 810–814. First citation in articleCrossrefGoogle Scholar

  • Levine, B., Freedman, M., Dawson, D., Black, S., Stuss, D.T. (1999). Ventral frontal contribution to self-regulation: Convergence of episodic memory and inhibition. Neurocase, 5, 263–275. First citation in articleCrossrefGoogle Scholar

  • Levy, R., Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex, 16, 916–928. First citation in articleCrossrefGoogle Scholar

  • Lezak, M.D., Howieson, D.B., Loring, D.W. (2004). Neuropsychological assessment (4th ed). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Lezak, M.D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Lhermitte, F. (1986). Human autonomy and the frontal lobes. Part II: Patient behavior in complex and social situations: The “environmental dependency syndrome”. Annals of Neurology, 19, 335–343. First citation in articleCrossrefGoogle Scholar

  • Lhermitte, F., Pillon, B., Serdaru, M. (1986). Part I: Imitation and utilization behavior: A neuropsychological study of 75 patients. Annals of Neurology, 19, 326–334. First citation in articleCrossrefGoogle Scholar

  • Lichter, D.G., Cummings, J.L. (2001). Introduction and overview. In D.G. Lichter & J.L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorder (pp. 1-43). New York: Guilford. First citation in articleGoogle Scholar

  • Litvan, I. (2001). Personality and behavioral changes with frontal-subcortical dysfunction. In D.G. Lichter & J.L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorder (pp. 151-182). New York: Guilford. First citation in articleGoogle Scholar

  • Magno, E., Foxe, J.J., Molholm, S., Robertson, I.H., Garavan, H. (2006). The anterior cingulate and error avoidance. Journal of Neuroscience, 26, 4769–4773. First citation in articleCrossrefGoogle Scholar

  • Manchester, D., Priestley, N., Jackson, H. (2004). The assessment of executive functions: Coming out of the office. Brain Injury, 18, 1067–1081. First citation in articleCrossrefGoogle Scholar

  • Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., Aitken, M., Robbins, T. (2002). Decision-making processes following damage to the prefrontal cortex. Brain, 125, 624–639. First citation in articleCrossrefGoogle Scholar

  • Marin, R.S. (1996). Apathy: Concept, syndrome, neural mechanisms, and treatment. Seminars in Clinical Neuropsychiatry, 1, 304–314. First citation in articleGoogle Scholar

  • Marin, R.S. (1990). Differential diagnosis and classification of apathy. American Journal of Psychiatry, 147, 22–30. First citation in articleCrossrefGoogle Scholar

  • Marin, R.S., Biedrzycki, R.C., Firinciogullari, S. (1991). Reliability and validity of the Apathy Evaluation Scale. Psychiatry Research, 38, 143–162. First citation in articleCrossrefGoogle Scholar

  • Matthes -von Cramon, G., von Cramon, Y. (2000). Störungen exekutiver Funktionen. In Sturm, W. Herrmann, M. & Wallesch C.W. (Hrsg), Lehrbuch der Klinischen Neuropsychologie. Grundlagen, Methoden, Diagnostik, Therapie (S. 392-410). Lisse: Swets & Zeitlinger. First citation in articleGoogle Scholar

  • Malloy, P., Grace, J. (2005). A review of rating scales for measuring behavior change due to frontal systems damage. Cognitive and Behavioral Neurology, 18, 18–27. First citation in articleCrossrefGoogle Scholar

  • McDonald, S., Pearce, S. (1996). Clinical insight into pragmatic theory: Frontal lobe deficits and sarcasm. Brain & Language, 53, 81–101. First citation in articleCrossrefGoogle Scholar

  • McDonald, S., Pearce, S. (1998). Requests that overcome listeners reluctance: Impairment associated with executive function in brain injury. Brain & Language, 61, 88–104. First citation in articleCrossrefGoogle Scholar

  • McDonald, S., Togher, L., Code, C. Eds. (1999). Communication disorders following traumatic brain injury. Hove: Psychology Press. First citation in articleGoogle Scholar

  • MacDonald, S., Johnson, C.J. (2005). Assessment of subtle cognitive-communication deficits following acquired brain injury: A normative study of the Functional Assessment of Verbal Reasoning and Executive Strategies (FAVRES). Brain Injury, 19, 895–902. First citation in articleCrossrefGoogle Scholar

  • Mesulam, M.-M. (2002). The human frontal lobes: Transcending the default mode through contingent encoding. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 8-30). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. First citation in articleCrossrefGoogle Scholar

  • Nielen, M.M., Veltman, D.J., de Jong, R., Mulder, G., den Boer, J.A. (2002). Decision making performance in obsessive compulsive disorder. Journal of Affective Disorder, 69, 257–260. First citation in articleCrossrefGoogle Scholar

  • Niemann, H., Sturm, W., Thöne-Otto, A.I.T., Willmes-von-Hinckeldey, K. (in press). CVLT - California Verbal Learning Test - Deutsche Adaption. Frankfurt: Harcourt. First citation in articleGoogle Scholar

  • Norman, D.A., Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R.J. Davidson, G.E. Schwartz, & D. Shapiro (Eds.), Consciousness and self regulation. Advances in research Vol. 4, pp. 1-18). New York: Plenum. First citation in articleCrossrefGoogle Scholar

  • Nys, G.M., van Zandvoort, M.J., Roks, G., Kappelle, L.J., de Kort, P.L., de Haan, E.H. (2004). The role of executive functioning in spontaneous confabulation. Cognitive and Behavioral Neurology, 17, 213–218. First citation in articleGoogle Scholar

  • Odhuba, R.A., van den Broek, M.D., Johns, L.C. (2005). Ecological validity of measures of executive functioning. British Journal of Clinical Psychology, 44, 269–278. First citation in articleCrossrefGoogle Scholar

  • Peterson, L.R., Peterson, M.J. (1959). Short term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198. First citation in articleCrossrefGoogle Scholar

  • Petrides, M., Pandya, D.N. (2002). Association pathways of the prefrontal cortex and functional observations. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 31-50). New York: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Preston, S.D., De Waal, F.B.M. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25, 1–20. First citation in articleCrossrefGoogle Scholar

  • Prigatano, G.P. (2005). Disturbances of self-awareness and rehabilitation of patients with traumatic brain injury: A 20-year perspective. Journal of Head Trauma Rehabilitation, 20, 19–29. First citation in articleCrossrefGoogle Scholar

  • Prutting, C.A., Kirchner, D.M. (1987). A clinical appraisal of the pragmatic aspects of language. Journal of Speech and Hearing Disorders, 52, 105–119. First citation in articleCrossrefGoogle Scholar

  • Rabbitt, P. (1997). Introduction: Methodology and models in the study of executive function. In P. Rabbitt (Ed.), Methodology of frontal and executive function (pp. 1-38). Hove: Psychology Press. First citation in articleGoogle Scholar

  • Regard, M., Strauss, E., Knapp, P. (1982). Children's production on verbal and nonverbal fluency tasks. Perceptual and Motor Skills, 55, 839–844. First citation in articleCrossrefGoogle Scholar

  • Reischies, F.M. (2002). Psychopathologie des Frontalhirns. In H. Förstl (Hrsg.), Frontalhirn. Funktionen und Erkrankungen (S. 89-108). Heidelberg: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Repovs, G., Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience, 139, 5–21. First citation in articleCrossrefGoogle Scholar

  • Robbins, T.W. (1998). Dissociating executive functions of the prefrontal cortex. In A.C. Roberts, T.W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex. Executive and cognitive functions (pp. 117-130). Oxford: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Rolls, E.T., Hornak, J., Wade, D., McGrath, J. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. Journal of Neurology, Neurosurgery and Psychiatry, 57, 1518–1524. First citation in articleCrossrefGoogle Scholar

  • Rolls, E.T. (1999). The brain and emotion. Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Rowe, A.D., Bullock, P.R., Polkey, C.E., Morris, R.G. (2001). “Theory of mind” impairments and their relationship to executive functioning following frontal lobe excisions. Brain, 124, 600–616. First citation in articleCrossrefGoogle Scholar

  • Ross, T.P., Calhoun, E., Cox, T., Wenner, C., Kono, W., Pleasant, M. (2007). The reliability and validity of qualitative scores for the Controlled Oral Word Association Test. Archives of Clinical Neuropsychology, 22, 475–488. First citation in articleCrossrefGoogle Scholar

  • Royall, D.R., Lauterbach, E.C., Cummings, J.L., Reeve, A., Rummans, T.A., Kaufer, D.I., LaFrance, W.C., Coffey, C.E.(2002). (function). review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. The Journal of Neuropsychiatry and Clinical Neurosciences, 14, 377–405. First citation in articleCrossrefGoogle Scholar

  • Salthouse, T.A. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19, 532–545. First citation in articleCrossrefGoogle Scholar

  • Sanders, A.F. (1998). Elements of human performance: Reaction processes and attention in human skill. Mahwah: Erlbaum. First citation in articleGoogle Scholar

  • Schellig, D., Drechsler, R., Heinemann, D., Sturm, W. (in Vorbereitung). Handbuch neuropsychologischer Testverfahren. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Schmitz, T.W., Rowley, H.A., Kawahara, T.N., Johnson, S.C. (2006). Neural correlates of self-evaluative accuracy after traumatic brain injury. Neuropsychologia, 44, 762–773. First citation in articleCrossrefGoogle Scholar

  • Schnider, A. (2003). Spontaneous confabulation and the adaptation of thought to ongoing reality. Nature Reviews, 4, 662–671. First citation in articleCrossrefGoogle Scholar

  • Sebanz, N., Prinz, W. Eds. (2006). Disorders of volition. Cambridge MA: MIT Press. First citation in articleGoogle Scholar

  • Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 298, 199–209. First citation in articleCrossrefGoogle Scholar

  • Shallice, T. (2002). Fractionation of the supervisory system. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 261-277). New York: Oxford University Press. First citation in articleCrossrefGoogle Scholar

  • Shallice, T., Evans, M.E. (1978). The involvement of the frontal lobes in cognitive estimation. Cortex, 14, 294–303. First citation in articleCrossrefGoogle Scholar

  • Shallice, T., Burgess, P.W. (1991). Deficits in strategy application following frontal lobe damage in man. Brain, 114, 727–741. First citation in articleCrossrefGoogle Scholar

  • Shallice, T., Burgess, P.W. (1996). Domains of supervisory control and the temporal organization of behavior. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351, 1405–1412. First citation in articleCrossrefGoogle Scholar

  • Shamay-Tsoory, S.G., Tomer, R., Berger, B.D., Aharon-Peretz, J. (2003). Characterization of empathy deficits following prefrontal brain damage: The role of the right ventromedial prefrontal cortex. Journal of Cognitive Neuroscience, 15, 324–337. First citation in articleCrossrefGoogle Scholar

  • Shamay-Tsoory, S.G., Tomer, R., Berger, B.D., Goldsher, D., Aharon-Peretz, J. (2005). Impaired “affective theory of mind” is associated with right ventromedial prefrontal damage. Cognitive and Behavioral Neurology, 18, 55–67. First citation in articleCrossrefGoogle Scholar

  • Singer, T., Seymour, B., O'Doherty, J., Kaube, H., Dolan, R.J., Frith, C.D. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303, 1157–1162. First citation in articleCrossrefGoogle Scholar

  • Smith, E.E., Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661. First citation in articleCrossrefGoogle Scholar

  • Sohlberg, M.M. (2000). Assessing and managing unawareness of self. Seminars in Speech and Language, 21, 135–151. First citation in articleCrossrefGoogle Scholar

  • Starkstein, S.E., Fedoroff, P., Berthier, M.L., Robinson, R.G. (1990). Manic depressive and pure manic states after brain lesions. Biological Psychiatry, 29, 149–158. First citation in articleCrossrefGoogle Scholar

  • Starkstein, S.E., Kremer, J. (2001). The Disinhibition syndrome and fronto-subcortical circuits. In D.G. Lichter & J.L. Cummings (Eds.), Frontal-subcortical circuits in psychiatric and neurological disorder (pp. 163-176). New York: Guilford. First citation in articleGoogle Scholar

  • Stemmer, B., Vihla, M., Salmelin, R. (2004). Activation of the human sensorimotor cortex during error-related processing: A magnetoencephalography study. Neuroscience Letter, 362, 44–47. First citation in articleCrossrefGoogle Scholar

  • Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. First citation in articleCrossrefGoogle Scholar

  • Stuss, D.T. (1991). Self, awareness and the frontal lobes: A neuropsychological perspective. In J. Straus & G.R. Goethals (Eds.), The self: interdisciplinary approaches (pp. 255-278). New York: Springer-Verlag. First citation in articleGoogle Scholar

  • Stuss, D.T., Van Reekum, R., Murphy, K.J. (2000). Differentiation of states and causes of apathy. . In Borod, J.C. (Ed.), The neuropsychology of emotion (pp. 340-366). Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Stuss, D.T., Alexander, M.P. (2000). Executive functions and the frontal lobes. A conceptual view. Psychological Research, 63, 289–298. First citation in articleCrossrefGoogle Scholar

  • Stuss, D.T., Gallup, G.G., Alexander, M.P. (2001). The frontal lobes are necessary for a theory of mind. Brain, 124, 279–286. First citation in articleCrossrefGoogle Scholar

  • Stuss, D.T., Alexander, M.P., Floden, D., Binns, M.A., Levine, B., McIntosh, A.R., Rajah, N., Hevenor, S.J. (2002). Fractionation and localization of distinct frontal lobe processes: Evidence from focal lesions in humans. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 392-407). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Stuss, D.T., Murphy, K.J., Binns, M.A., Alexander, M.P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 123, 1363–1380. First citation in articleGoogle Scholar

  • Stuss, D.T., Anderson, V. (2004). The frontal lobes and theory of mind: Developmental concepts from adult focal lesion research. Brain and Cognition, 55, 69–83. First citation in articleCrossrefGoogle Scholar

  • Stuss, D.T., Alexander, M.P. (2007). Is there a dysexecutive syndrome?. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 901–915. First citation in articleCrossrefGoogle Scholar

  • Tucha, O., Lange, K.W. (2004). TL-D, Turm von London - Deutsche Version. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Ullsperger, M., von Cramon, D.Y. (2001). Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRIs and ERPs. Neuroimage, 14, 1387–1401. First citation in articleCrossrefGoogle Scholar

  • von Cramon, D.Y., Matthes - von Cramon, G. (1993). Problemlösendes Denken. In von Cramon, D.Y. Mai, N. & Ziegler, W. (Hrsg.) Neuropsychologische Diagnostik (S. 123-152). Weinheim: VCH. First citation in articleGoogle Scholar

  • Zimmermann, P., Fimm, B. (2002). Testbatterie zur Aufmerksamkeitsprüfung TAP. Herzogenrath: Psytest. First citation in articleGoogle Scholar