Skip to main content
Published Online:https://doi.org/10.1026/0012-1924.53.4.184

Zusammenfassung. In der Intelligenzdiagnostik können für Skalenscores Gesamt- und Konstruktreliabilitäten unterschieden werden. Während Gesamtreliabilitäten sich auf die gesamte “wahre“ Varianz in einem Skalenscore beziehen, spiegeln Konstruktreliabilitäten die Genauigkeit wider, mit dem ein Skalenscore ein bestimmtes Fähigkeitskonstrukt erfasst. Gesamt- und Konstruktreliabilitäten sind nicht identisch, wenn man annimmt, dass sich die Skalenscores multidimensional aus Varianzanteilen zusammensetzen, welche die allgemeine kognitive Fähigkeit g sowie spezifischere kognitive Fähigkeiten messen. In dieser Arbeit illustrieren wir dieses Problem für die Skalen des Berliner Intelligenzstrukturtests (BIS-Test) anhand einer Schülerstichprobe (N = 910). Zur Berechnung von Gesamt- und Konstruktreliabilitäten verwendeten wir eine Methode, die auf Modellparametern aus konfirmatorischen Faktorenanalysen basiert. Während die Gesamtreliabilitäten weitestgehend zufrieden stellend waren (die Werte lagen zwischen .77 für die Merkfähigkeit und .93 für g), waren die Konstruktreliabilitäten der spezifischen kognitiven Fähigkeiten unabhängig vom verwendeten Koeffizienten nicht zufrieden stellend (die Werte lagen zwischen .17 für die numerische Fähigkeit und .67 für die Verarbeitungskapazität). Mögliche Implikationen der Ergebnisse für die Einzelfalldiagnostik werden diskutiert.


How precisely can cognitive abilities be measured? The distinction between composite and construct reliabilities in intelligence assessment exemplified with the Berlin Intelligence Structure Test

Abstract. Two aspects of the reliability of scale scores of intelligence measures can be distinguished: the amount of variance in the scale scores that is accounted for by all underlying cognitive abilities (composite reliability) and the degree to which the scale score reflects one specific ability (construct reliability). Composite reliability and construct reliability are not identical if scale scores represent a multidimensional composite that contains variance in general cognitive ability (g) and variance in specific cognitive abilities. In this paper we illustrate this problem using the scales of the Berlin Intelligence Structure Test and data from a student sample (N = 910). We estimated composite and construct reliability using a method based on the model parameters of confirmatory factor analysis. Composite reliabilities were satisfactory (and ranged between .77 for memory and .93 for g). Construct reliabilities of the specific cognitive abilities were inadequate, however, independent of the measure of construct reliability applied (values ranged between .17 for quantitative ability and .67 for reasoning). Possible implications for the diagnosis of individuals’ cognitive abilities are discussed.

Literatur

  • Bacon, D. R. Sauer, P. L. Young, M. (1995). Composite reliability in structural equation modeling. Educational and Psychological Measurement, 55, 394– 406 CrossrefGoogle Scholar

  • Beckmann, J. F. Guthke, J. (1999). Berliner Intelligenzstruktur-Test (BIS). Form 4. Diagnostica, 45, 56– 61 LinkGoogle Scholar

  • Bollen, K. A. (1989). Structural equations with latent variables . New York: John Wiley & Sons Google Scholar

  • Brunner, M. Süß, H.-M. (2005). Analyzing the reliability of multidimensional measures: An example from intelligence research. Educational and Psychological Measurement, 65, 227– 240 CrossrefGoogle Scholar

  • Carroll, J. B. (1993). Human cognitive abilities - A survey of factoranalytic studies . New York: Cambridge University Press Google Scholar

  • Cattell, R. B. Radcliffe, J. A. (1962). Reliabilities and validities of simple and extended weighted and buffered unifactor scales. The British Journal of Statistical Psychology, 15, 113– 128 CrossrefGoogle Scholar

  • Cattell, R. B. Tsujioka, B. (1964). The importance of factor-trueness and validity, versus homogeneity and orthogonality, in test scales. Educational and Psychological Measurement, 24, 3– 30 CrossrefGoogle Scholar

  • Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of Applied Psychology, 78, 98– 104 CrossrefGoogle Scholar

  • Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297– 334 CrossrefGoogle Scholar

  • Grice, J. W. (2001). Computing and evaluating factor scores. Psychological Methods, 6, 430– 450 CrossrefGoogle Scholar

  • Gustafsson, J. E. (2002). Measurement from a hierarchical point of view. In H. I. Braun, D. N. Jackson & D. E. Wiley (Eds.), The role of constructs in psychological and educational measurement (pp. 73-95). Mahwah, NJ: Lawrence Erlbaum Associates Google Scholar

  • Gustafsson, J. E. Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28, 407– 434 CrossrefGoogle Scholar

  • Hancock, G. R. Mueller, R. O. (2001). Rethinking construct reliability within latent variable systems. In R. Cudeck, S. du Toit & D. Soerbom (Eds.), Structural equation modeling: present and future - A festschrift in honor of Karl Jöreskog (pp. 195-216). Lincolnwood, IL: Scientific Software International Google Scholar

  • Hogan, T. P. Benjamin, A. Brezinski, K. L. (2000). Reliability methods: A note on the frequency of use of various types. Educational and Psychological Measurement, 60, 523– 531 CrossrefGoogle Scholar

  • Horn, J. L. Noll, J. (1997). Human cognitive capabilities: Gf-Gc theory. In D. P. Flanagan, J. L. Genshaft & P. L. Harrison (Eds.), Contemporary intellectual assessment. Theories, tests, and issues (pp. 53-91). New York: The Guilford Press Google Scholar

  • Hu, L.-T. Bentler, P. M. (1998). Fit Indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424– 453 CrossrefGoogle Scholar

  • Irvine, S. H. Kyllonen, P. C. (Eds.) (2002). Item generation for test development . Mahwah, NJ: Lawrence Erlbaum Google Scholar

  • Jäger, A. O. (1982). Mehrmodale Klassifikation von Intelligenzleistungen. Experimentell kontrollierte Weiterentwicklung eines deskriptiven Intelligenzstrukturmodells. Diagnostica, 28, 195– 226 Google Scholar

  • Jäger, A. O. Süß, H.-M. Beauducel, A. (1997). Berliner Intelligenzstruktur-Test, Form 4 . Göttingen: Hogrefe Google Scholar

  • Kaplan, D. (1990). Evaluating and modifying covariance structure models: A review and recommendation. Multivariate Behavioral Research, 25, 137– 155 CrossrefGoogle Scholar

  • Kyllonen, P. C. (1994). Aptitude testing inspired by information processing: A test of the four-sources model. The Journal of General Psychology, 120, 375– 405 CrossrefGoogle Scholar

  • Lienert, G. A. (1989). Testaufbau und Testanalyse . München: Psychologie Verlags Union Google Scholar

  • Lord, F. M. Novick, M. R. (1968). Statistical theories of mental test scores . Reading, MA: Addison-Wesley Google Scholar

  • Lubinski, D. (2004). Introduction to the special section on cognitive abilities: 100 years after Spearman’s (1904) “‘General intelligence’, objectively determined and measured”. Journal of Personality and Social Psychology, 86, 96– 111 CrossrefGoogle Scholar

  • Marsh, H. W. Balla, J. R. McDonald, R. P. (1988). Goodness-of-fit indexes in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103, 391– 410 CrossrefGoogle Scholar

  • Marsh, H. W. Trautwein, U. Lüdtke, O. Köller, O. Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child Development, 76, 397– 416 CrossrefGoogle Scholar

  • McDonald, R. P. (1999). Test theory: A unified treatment . Mahwah, NJ.: Lawrence Erlbaum Associates Google Scholar

  • Muthén, L. K. Muthén, B. O. (1998-2004). Mplus User´s Guide. Third Edition . Los Angeles, CA: Muthén & Muthén Google Scholar

  • Nunnally, J. C. Bernstein, I. H. (1994). Psychometric theory . New York: McGraw-Hill Google Scholar

  • Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21, 173– 184 CrossrefGoogle Scholar

  • Raykov, T. Shrout, P. E. (2002). Reliability of scales with general structure: Point and interval estimation using a structural equation modeling approach. Structural Equation Modeling, 9, 195– 212 CrossrefGoogle Scholar

  • Sechrest, L. (1963). Incremental validity: A recommendation. Educational and Psychological Measurement, 23, 153– 158 CrossrefGoogle Scholar

  • Snijders, T. A. B. Bosker, R. J. (1999). Multilevel Analysis - An introduction to basic and advanced multilevel modeling . London: SAGE Publications Google Scholar

  • Süß, H.-M. (1996). Intelligenz, Wissen und Problemlösen. Kognitive Voraussetzungen für erfolgreiches Handeln bei computersimulierten Problemen . Göttingen: Hogrefe Google Scholar

  • Süß, H.-M. (2001). Prädiktive Validität der Intelligenz im schulischen und außerschulischen Bereich. In E. Stern & J. Guthke (Hrsg.), Perspektiven der Intelligenzforschung. Ein Lehrbuch für Fortgeschrittene (S. 109-135). Lengerich: Pabst Science Publishers Google Scholar

  • Süß, H.-M. Beauducel, A. (2005). Faceted models of intelligence. In O. Wilhelm & R. Engle (Eds.), Handbook of understanding and measuring intelligence (pp. 313-332). Thousand Oaks: Sage Google Scholar

  • Süß, H.-M. Oberauer, K. Wittmann, W. W. Wilhelm, O. Schulze, R. (2002). Working-memory capacity explains reasoning ability - and a little bit more. Intelligence, 30, 261– 288 CrossrefGoogle Scholar

  • Weis, S. Süß, H.-M. (in Druck) Reviving the search for social intelligence. A multitrait-multimethod study of its structure and construct validity. Personality and Individual Differences, Google Scholar

  • Wiggins, J. S. (1973). Personality and prediction: Principles of personality assessment . Reading: Addison-Wesley Google Scholar

  • Wittmann, W. W. (1988). Multivariate reliability theory: Principles of symmetry and successful validation strategies. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (2nd ed.) (pp. 505-560). New York: Plenum Google Scholar

  • Wittmann, W. W. Süß, H.-M. (1999). Investigating the paths between working memory, intelligence, knowledge, and complex problemsolving performances via Brunswik symmetry. In P. L. Ackerman, P. C. Kyllonen & R. D. Roberts (Eds.), Learning and individual differences. Process, trait and content determinants (pp. 77-108). Washington, DC: APA Books Google Scholar