Skip to main content
Published Online:https://doi.org/10.1026/1617-6383.19.1.14

Zusammenfassung. In einer hybriden Realität kann Information aus der virtuellen Realität (VR) und Information aus der natürlichen Realität umso leichter integriert werden, je stärker das VR-Medium Präsenz erzeugt, d.h. je mehr es gestattet, Information aus der virtuellen Realität als ebenso ‘unvermittelt‘ zu erleben wie Information aus der natürlichen Realität. Zur Untersuchung dieses Zusammenhanges wird die Größengewichtstäuschung (GGT) herangezogen, wonach von zwei gleich schweren aber unterschiedlich großen Objekten das kleinere Objekt als schwerer beurteilt wird. Es wird erwartet, dass die Täuschung in einer hybriden Realität, in der die Versuchsteilnehmer/innen die Objekte in der VR sehen und gleichzeitig in der natürlichen Realität heben, umso größer ist, je mehr das VR-Medium für das Präsenz-Erleben relevante Bedingungen wie Abschirmung und sensorisches Feedback erfüllt. 60 Versuchsteilnehmer/innen beurteilten das Gewicht von insgesamt 15 unterschiedlich hohen und schweren Zylindern (drei Höhen, fünf Gewichte) nach der Größenverhältnisschätzmethode. Sie sahen die gehobenen Zylinder entweder in der natürlichen Realität, in einer von drei unterschiedlichen Head-Mounted-Display (HMD) Virtual Realities (mit unverzögerter Synchronisation von Bild und Kopfbewegung, mit verzögerter Synchronisation von Bild und Kopfbewegung, ohne Synchronisation von Bild und Kopfbewegung) oder in zwei unterschiedlichen Desktop-Virtual Realities (mit Abschirmung von visuellen Reizen aus der natürlichen Realität, ohne Abschirmung). Die psychophysischen Urteile zeigen, dass der Grad der GGT, quantifiziert durch den negativen Steigungskoeffizienten der linearen Abhängigkeit der Gewichtsurteile von der Höhe der Zylinder, in der HMD-Realität mit unverzögerter Synchronisation am höchsten ist. Die GGT wird als Verfahren zur Operationalisierung von Präsenz diskutiert.


Characteristics of the virtual reality medium as determinants of inter-modal information integration in a hybrid reality

Abstract. The perception of presence in a virtual reality medium is a prerequisite for an integration of information mediated by the virtual environment with information of the natural environment. The degree of information integration would hereafter be an objective indicator of the presence experienced in a virtual environment. The classical paradigm for the demonstration of inter-modal information integration is the size-weight illusion which describes the phenomenon that when two objects of the same weight but of different size are lifted, the smaller object is judged as heavier. The hypothesis is tested that the degree of the size-weight illusion depends on the conditions, which allow the observer to integrate the visual and kinaesthetic information perceived when lifting weights. It is expected that the degree of the illusion in a hybrid reality depends on the “realism” provided by different kinds of the virtual reality (VR) involved when the weights are seen in the VR and at the same time lifted in the natural reality. Fifteen objects of different size (three sizes) and weight (five weights) were presented to 60 participants under different perceptual conditions, in natural reality or in virtual reality. Five different kinds of VR are used: three head-mounted-display VRs (one with non delayed head tracking, one with delayed head tracking, one without head tracking) and two desktop VRs (one with screening the user from input of the natural environment using a visor, one without screening). The heaviness of the objects was scaled using the magnitude estimation method. Data show that the degree of the illusion, quantified by the negative slope coefficient of the linear relationship between cylinder size and weight judgment, is largest in the HMD virtual reality with non delayed head tracking. This makes the size-weight illusion a promising objective presence measure.

Literatur

  • Anderson, N. H. (1970). Averaging mode applied to the size-weight illusion. Perception and Psychophysics, 8, 1– 4 CrossrefGoogle Scholar

  • Bailenson, J. N., Blascovich, H. J., Beall, A. C., Loomis, J. M. (2003). Interpersonal distance in immersive virtual environments. Personality and Social Psychology Bulletin, 29, 1– 15 CrossrefGoogle Scholar

  • Bente, G., Krämer, N. C., Petersen, A. (2002). Virtuelle Realität als Gegenstand und Methode in der Psychologie. In G. Bente, N. C. Krämer & A. Petersen (Hrsg.), Virtuelle Realitäten (S. 1-32). Göttingen: Hogrefe Google Scholar

  • Biocca, F., Delaney, B. (1995). The vision of virtual reality. In F. Biocca & M. Levy (Eds.), Communication in the age of virtual reality (pp. 57-126), Hillsdale: Lawrence Erlbaum Associates Google Scholar

  • Biocca, F., Kim, J., Choi, J. (2001). Visual Touch in virtual environments: An exploratory study of presence, multi-modal interfaces, and cross-modal sensory illusions. Presence: Teleoperators & Virtual Environments, 10(3), 247– 265 CrossrefGoogle Scholar

  • Cross, D. V., Rotkin, L. (1975). The relation between size and apparent heaviness. Perception & Psychophysics, 3, 122– 135 Google Scholar

  • De Vignemont, D., Ehrsson, H. H., Haggard, P. (2005). Bodily illusions mulate tactile perception. Current Biology, 15, 1286– 1290 CrossrefGoogle Scholar

  • Draper, J. V., Blair, L. M. (1996). Workload, flow, and telepresence during teleoperation. Proceedings of the 1996 IEEE International Conference on Robotics and Automation, 1996, 2, (pp. 1030-1035). Minneapolis, MN: IEEE Robotics and Automation Society CrossrefGoogle Scholar

  • Faubert, J. (2001). Motion parallax, stereoscopy, and the perception of depth: Practical and theoretical issues. In B. Javidi & O. Fumio (Eds.), Three-dimensional Video and Display: Devices and Systems. Proceedings of SPIE, CR76 (pp. 168-191). Bellingham, WA: Society of Photo-Optical Instrumentation Engineers Google Scholar

  • Freeman, J., Abons, S. E., Pearson, D. E., Ijsselsteijn, W. A. (1999). Effects of sensory information and prior experience on direct subjective ratings of presence. Presence: Teleoperators & Virtual Environments, 8(1), 1– 13 CrossrefGoogle Scholar

  • Gaggioli, A. (2001). Using virtual reality in experimental psychology. In G. Riva & C. Galimberti (Eds.), Towards CyberPsychology: Mind, Cognitions and Society in the Internet Age (pp. 157-174). Amsterdam: IOS Press Google Scholar

  • Gaggioli, A., Breining, R. (2001). Perception and Cognition in Immersive Virtual Reality. In G. Riva & F. Davide (Eds.), Communications through virtual technologies: Identity, Community and Technology in the Communication Age (pp. 71-86). Amsterdam: IOS Press Google Scholar

  • Gelman, R., Durgin, F., Kaufman, L. (1995). Distinguishing between animates and innamates: Not by motion alone. In D. Sperber, D. Premack & A. J. Premack (Eds.), Causal cognition: A multidisziplinary debate (pp. 151-184). Oxford: Clarendon Press Google Scholar

  • Guski, R., Troje, N. (2003). Audiovisual phenomenal causality. Perception and Psychophysics, 65, 789– 800 CrossrefGoogle Scholar

  • Haggard, P. (2005). Conscious intention and motor cognition. Trends in Cognitive Science, 9, 290– 295 CrossrefGoogle Scholar

  • Hartmann, T., Böcking, S., Schramm, H., Wirth, W., Klimmt, C., Vorderer, P. (2005). Räumliche Präsenz als Rezeptionsmodalität: Ein theoretisches Modell zur Entstehung von Präsenzerleben. In V. Gehrau, H. Bilandzic & J. Woelke (Hrsg.), Rezeptionsstrategien und Rezeptionsmodalitäten (S. 21-37). München: R. Fischer Google Scholar

  • Heineken, E., Schulte, F. P. (2000). Acquiring distance knowledge in virtual environments. In NATO/RTO (Ed.), Proceedings of the NATO RTO Workshop HFM-058/WS-007, 2000 (pp. 17.1-17.5). Neuilly-sur-Seine: NATO RTO/RTA Google Scholar

  • Hendrix, C., Barfield, W. (1996). Presence within virtual environments as a function of visual display parameters. Presence: Teleoperators & Virtual Environments, 5(3), 274– 289 CrossrefGoogle Scholar

  • Ijsselsteijn, W. A. (2002). Elements of a multi-level theory of presence: Phenomenology, mental processing and neural correlates. PRESENCE 2002 - Annual International Workshop on Presence, 2002 (pp. 245-259). Porto, Portugal: Universidade Fernando Pessoa Google Scholar

  • Ijsselsteijn, W. A. (2004). Presence in Depth . Unveröffentlichte Dissertation. Eindhoven: University of Technology Google Scholar

  • Ijsselsteijn, W., de Ridder, H., Hamberg, R., Bouwhuis, D., Freeman, J. (1998). Perceived depth and the feeling of presence in 3DTV. Displays, 18, 207– 214 CrossrefGoogle Scholar

  • Ijsselsteijn, W. A., de Ridder, H., Freeman, J., Avons, S. E. (2000). Presence: Concept, determinants and measurement. Proceedings of the SPIE, Human Vision and Electronic Imaging V, 2000 (pp. 2959-2976). San Jose, CA: Photonics West - Human Vision and Electronic Imaging V Google Scholar

  • Jeannerod, M. (2003). In Agency and self-awareness. In J. Roessler & N. Eilan, N. (Eds.), Issues in Philosophy and Psychology (pp. 128-149). Oxford: Oxford University Press Google Scholar

  • Jones, L. A. (1986). Perception of force and weight: Theory and research. Psychological Bulletin, 100, 29– 42 CrossrefGoogle Scholar

  • Lee, J. M. (2004). Why presence occurs: Evolutionary psychology, media equation, and presence. Presence: Teleoperators & Virtual Environments, 13(4), 494– 505 CrossrefGoogle Scholar

  • Lombard, M., Ditton, T. (1997). At the heart of it all: The concept of presence. Journal of Computer-mediated Communication, 3(2), Verfügbar unter: www.ascusc.org/jcmc/vol3/issue2/lombard.html [6.7.2000] CrossrefGoogle Scholar

  • Masin, C. M., Crestoni, L. (1988). Experimental demonstration of the sensory basis of the size-weight illusion. Perception and Psychophysics, 44, 309– 371 CrossrefGoogle Scholar

  • Metzger, W. (1968). Psychologie . Darmstadt: Dr. Dietrich Steinkopff Verlag CrossrefGoogle Scholar

  • Michotte, A. (1963). The perception of causality . New York: Basic Books Google Scholar

  • Nielsen, J. (1999). Designing web usability . Indianapolis: New Riders Publishing Google Scholar

  • Ollesch, H., Heineken, E. (im Druck) Sozialer Einfluss computergenerierter Agenten in einer virtuellen Umgebung. i-com - Zeitschrift für interaktive und kooperative Medien, Google Scholar

  • Pavani, F., Spence, C., Driver, J. (2000). Visual capture of touch: Out-of-the-body experiences with rubber gloves. Psychological Science, 11(5), 353– 359 CrossrefGoogle Scholar

  • Sarris, V., Heineken, E. (1976). An experimental test of two mathematical models applied to the size-weight illusion. Journal of Experimental Psychology, 2(2), 295– 298 Google Scholar

  • Scholl, B. J., Nakayama, K. (2002). Causal capture: Contextual effects on the perception of collision events. Psychological Science, 13(6), 493– 498 CrossrefGoogle Scholar

  • Scholl, B. J., Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Science, 4(8), 299– 309 CrossrefGoogle Scholar

  • Schubert, T., Friedmann, F., Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Presence: Teleoperators And Virtual Environments, 10(3), 266– 281 CrossrefGoogle Scholar

  • Schuemie, M. J., van der Straaten, P., Krijn, M., van der Mast, C. A. P. C (2001). Research on presence in virtual reality: A survey. CyberPsychology & Behavior, 8, 183– 201 CrossrefGoogle Scholar

  • Sheridan, T. B. (1996). Further musings on the psychophysics of presence. Presence: Teleoperators & Virtual Environments, 5(2), 241– 246 CrossrefGoogle Scholar

  • Sjöberg, L. (1969). Sensation scales in the size-weight illusion. Perception & Psychophysics, 10, 109– 112 Google Scholar

  • Slater, M., Steed, A., McCarthy, J., Maringelli, F. (1998). The influence of body movement on subjective presence in virtual environments. Presence: Teleoperators & Virtual Environments, 40(3), 469– 477 Google Scholar

  • Spence, C., Pavani, F., Driver, J. (1998). What crossing the hands can reveal about visuotactile links in spatial attention. Abstracts of the Psychonomic Society, 3, 13– Google Scholar

  • Steuer, J. (1992). Defining virtual reality: Dimensions determining presence. Journal of Communication, 42(4), 73– 93 CrossrefGoogle Scholar

  • Van Baren, J., Ijsselsteijn, W. (2004). Measuring presence: A guide to current measurement approaches. OmniPres project IST-2001-39737 . Verfügbar unter: www.presence-research.org/omnipres/D5.pdf [12.6.2006] Google Scholar

  • Voss, M., Ingram, J. N., Haggard, P., Wolpert, D. M. (2006). Sensorimotor attenuation by central motor command signals in the absence of movement. Nature Neuroscience, 9, 26– 27 CrossrefGoogle Scholar

  • Welch, R. B., Warren, D. H. (1980). Immediate perceptual response to inter-sensory discrepancy. Psychological Bulletin, 88(3), 638– 667 CrossrefGoogle Scholar

  • Welch, R. B., Warren, D. H. (1986). Intersensory interactions. In K. R. Boff, L. Kaufman & J. P.Thomas (Eds.), Handbook of Perception and Performance. Volume I: Sensory Processes and Perception (pp. 25.1-25.36). New York: Wiley Google Scholar

  • Willemsen, P., Colton, M. B., Creem-Regehr, S. H., Thompson, W. B. (2004). The effects of head-mounted-display mechanics on distance judgments in virtual environments. ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (pp. 35-48). Los Angeles: ACM Press CrossrefGoogle Scholar

  • Witmer, B. G., Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators & Virtual Environments, 7(3), 225– 240 CrossrefGoogle Scholar