Skip to main content
Original Articles and Reviews

Interventions Supporting Children’s Mathematics School Success

A Meta-Analytic Review

Published Online:https://doi.org/10.1027/1016-9040/a000141

In today’s society, mathematics is one of the most important competencies imparted in school. To improve children’s mathematical skills, existing interventions and trainings in mathematical learning address different proficiency levels and age groups, take place in different settings, can focus on a single task or a set of different tasks, be applied for different durations, and address different types of numerical content. However, when such trainings are evaluated, this often happens only insufficiently. In this review, we derive and apply four evaluation criteria in a meta-analysis of mathematical intervention literature: (i) evaluation with the actual target group, (ii) evaluation in comparison to a performance-matched control group, (iii) evaluation in comparison to a comparable alternative intervention, and (iv) separate evaluation of subcomponents in the case of multi-componential approaches. Based on these criteria, we review current intervention approaches, paying particular attention to how they were evaluated. A meta-analysis on 39 effect sizes extracted from 37 studies revealed a reliable impact of three of the above-proposed evaluation criteria on the reported efficacy of an intervention. In contrast, sample and methodological characteristics like grade level of participants or training duration were not associated with effect sizes. These data indicate that the reported efficacy of an intervention in mathematical learning may depend not only on the type of intervention conducted, but also on the thoroughness of the evaluation procedure.

References2

  • +An, S. A., Kulm, G. O., Ma, T. (2008). The effects of a music composition activity on Chinese students’ attitudes and beliefs towards mathematics: An exploratory study. Journal of Mathematics Education, 1, 96–113. First citation in articleGoogle Scholar

  • *Axtell, P. K., McCallum, R. S., Bell, S. M., Poncy, B. (2009). Developing math automaticity using a classwide fluency building procedure for middle school students: A preliminary study. Psychology in the Schools, 46, 526–538. First citation in articleCrossrefGoogle Scholar

  • Badian, N. A. (1983). Dyscalculia and nonverbal disorders of learning. In H. R. Myklebust (Ed.), Progress in learning disabilities, (Vol. 5, pp. 235–264). New York, NY: Stratton. First citation in articleGoogle Scholar

  • *Booth, J. L., Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016–1031. First citation in articleCrossrefGoogle Scholar

  • Butterworth, B., Varma, S., Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 1049–1053. First citation in articleCrossrefGoogle Scholar

  • Bynner, J., Parsons, S. (1997). Does numeracy matter? Evidence from the National Child Development Study on the impact of poor numeracy on adult life. London, UK: Basic Skills Agency. First citation in articleGoogle Scholar

  • *Calhoon, M. B., Fuchs, L. S. (2003). The effects of peer-assisted learning strategies and curriculum-based measurement on the mathematics performance of secondary students with disabilities. Remedial and Special Education, 24, 235–244. First citation in articleCrossrefGoogle Scholar

  • *Chiesa, M., Robertson, A. (2000). Precision teaching and fluency training: Making maths easier for pupils and teachers. Educational Psychology in Practice, 16, 297–310. First citation in articleCrossrefGoogle Scholar

  • *Clements, D. H., Sarama, J. (2008). Experimental evaluation of the effects of a research-based preschool mathematics curriculum. American Educational Research Journal, 45, 443–494. First citation in articleCrossrefGoogle Scholar

  • Codding, R. S., Burns, M. K., Lukito, G. (2011). Meta-Analysis of mathematic Basic-Fact Fluency Interventions: A component analysis. Learning Disabilities Research & Practice, 26, 36–47. First citation in articleCrossrefGoogle Scholar

  • Donovan, H. S., Kwekkeboom, K. L., Rosenzweig, M. Q., Ward, S. E. (2009). Nonspecific effects in psychoeducational intervention research. Western Journal of Nursing Research, 31, 983–998. First citation in articleCrossrefGoogle Scholar

  • Dowker, A. (2004). What Works for Children with Mathematical Difficulties?. London, UK: Department for Education and Skills. First citation in articleGoogle Scholar

  • *Durkin, K., Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support learning about decimal magnitude. Learning and Instruction, 22, 206–214. First citation in articleCrossrefGoogle Scholar

  • Elbourne, D. R., Altman, D. G., Higgins, J. P., Curtin, F., Worthington, H. V., Vaile, A. (2002). Meta-analyses involving cross-over trials: Methodological issues. International Journal of Epidemiology, 31, 140–149. First citation in articleCrossrefGoogle Scholar

  • *Fede, J. L. (2010). The effects of Go Solve Word Problems math intervention on applied problem solving skills of low performing fifth grade students. (Open Access Dissertations. Paper 236). Retrieved from scholarworks.umass.edu/open_access_dissertations/236 First citation in articleGoogle Scholar

  • Fischer, J.-P. (2010). Numerical performance increased by finger training: a fallacy due to regression toward the mean?. Cortex, 46, 272–273. First citation in articleCrossrefGoogle Scholar

  • *Fischer, U., Moeller, K., Bientzle, M., Cress, U., Nuerk, H.-C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18, 177–183. First citation in articleCrossrefGoogle Scholar

  • Fuchs, L. S., Fuchs, D. (2001). Principles for the prevention and intervention of mathematics difficulties. Learning Disabilities Research and Practice, 16, 85–95. First citation in articleCrossrefGoogle Scholar

  • *Fuchs, L. S., Fuchs, D., Hamlet, C. L., Powell, S. R., Capizzi, A. M., Seethaler, P. M. (2006). The effects of computer-assisted instruction on number combination skill in at-risk first graders. Journal of Learning Disabilities, 39, 467–475. First citation in articleCrossrefGoogle Scholar

  • Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science, 325, 280–283. First citation in articleCrossrefGoogle Scholar

  • *Gamo, S., Sander, E., Richard, J.-F. (2010). Transfer of strategy use by semantic recoding in arithmetic problem solving. Learning and Instruction, 20, 400–410. First citation in articleCrossrefGoogle Scholar

  • +Gerhard, S. (2009). Problem solving without numbers. An early approach to algebra. Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (CERME 6), Lyon, France, 2009 (pp. 499–508). First citation in articleGoogle Scholar

  • Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79, 1202–1242. First citation in articleCrossrefGoogle Scholar

  • Gersten, R., Jordan, N. C., Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities, 38, 293–304. First citation in articleCrossrefGoogle Scholar

  • Glass, G., McGaw, B., Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills, CA: Sage. First citation in articleGoogle Scholar

  • Griffin, S. (2003). Number worlds: A research-based mathematics program for young children. In D. H. Clements, A. DiBiase (Eds.), Engaging young children in mathematics: Findings of the 2000 National Conference on Standards for Preschool and Kindergarten Mathematics Education (pp. 325–342). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Hager, W., Hasselhorn, M. (2000). Psychologische Interventionsmaßnahmen: Was sollen sie bewirken können?. In W. Hager, J. L. Patry, H. Brezing (Eds.) [Psychological interventions: What should they be able to effectuate?] Evaluation psychologischer Interventionsmaßnahmen (pp. S73–S85). Bern, Switzerland: Huber. First citation in articleGoogle Scholar

  • Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6, 107–128. First citation in articleCrossrefGoogle Scholar

  • Higgins, J. P. T., Green, S. 2011 March Cochrane Handbook for Systematic Reviews of Interventions (Version 5.1.0). The Cochrane Collaboration, 2011 Retrieved from www.cochrane-handbook.org. First citation in articleGoogle Scholar

  • +Ivory, T. S. (2007). Improving mathematics achievement of exceptional learners through differentiated and peer-mediated instruction. (Unpublished dissertation). Nova Southeastern University, Fort Lauderdale, FL. First citation in articleGoogle Scholar

  • +Javed, S. H. 2008 Online facilitated mathematics learning in vocational education (Unpublished dissertation), Victoria University, Melbourne, Australia. First citation in articleGoogle Scholar

  • *Kaufmann, L., Handl, P., Thöny, B. (2003). Evaluation of a numeracy intervention program focusing on basic numerical knowledge and conceptual knowledge: A pilot study. Journal of Learning Disabilities, 36, 564–573. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L., Nuerk, H.-C. (2006). Die Entwicklung des Rechnens und dessen Störungen: Genese, Modelle, Diagnostik und Intervention. [On the development of calculation and its impairments: Genesis, models, diagnostics, and intervention] Zeitschrift für Legasthenie und Dyskalkulie (BVL), 2, 11–16. First citation in articleGoogle Scholar

  • Kaufmann, L., Wood, G., Rubinsten, O., Henik, A. (2011). Meta-analysis of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36, 763–787. First citation in articleCrossrefGoogle Scholar

  • *Ketterlin-Geller, L. R., Chard, D. J., Fien, H. (2008). Making connections in mathematics: Conceptual mathematics intervention for low-performing students. Remedial and Special Education, 29, 33–45. First citation in articleCrossrefGoogle Scholar

  • *Klein, A., Starkey, P., Clements, D., Sarama, J., Iyer, R. (2008). Effects of a pre-kindergarten mathematics intervention: A randomized experiment. Journal of Research on Educational Effectiveness, 1, 155–178. First citation in articleCrossrefGoogle Scholar

  • *Krajewski, K., Nieding, G., Schneider, W. (2008). Kurz- und langfristige Effekte mathematischer Frühförderung im Kindergarten durch das Programm „Mengen, Zählen, Zahlen”. [Short-term and long-term effects of early math education in kindergarten] Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 40, 135–146. First citation in articleLinkGoogle Scholar

  • *Kroesbergen, E. H., van Luit, J. E. H. (2002). Teaching multiplication to low math performers: Guided versus structured instruction. Instructional Science, 30, 361–378. First citation in articleCrossrefGoogle Scholar

  • Kroesbergen, E. H., Van Luit, J. E. H. (2003). Mathematics interventions for children with special educational needs. A meta-analysis. Remedial and Special Education, 24, 97–114. First citation in articleCrossrefGoogle Scholar

  • *Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., …, von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782–795. First citation in articleCrossrefGoogle Scholar

  • *Lai, M.-L., Baroody, A. J., Johnson, A. R. (2008). Fostering Taiwanese preschoolers’ understanding of the addition-subtraction inverse principle. Cognitive Development, 23, 216–235. First citation in articleCrossrefGoogle Scholar

  • *Lenhard, A., Lenhard, W., Schug, M., Kowalski, A. (2011). Computerbasierte Mathematikförderung mit den “Rechenspielen mit Elfe und Mathis I”: Vorstellung und Evaluation eines Computerprogramms für Erst- bis Drittklässler. [Computer-based math training with “Math Games with Elfe and Mathis I”: Presentation and evaluation of a computer program for first to third graders] Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43, 79–88. First citation in articleLinkGoogle Scholar

  • Mazzocco, M. M. M., Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school age years. Annals of Dyslexia, 53, 218–253. First citation in articleCrossrefGoogle Scholar

  • Melhuish, E. C., Phan, M. B., Sylva, K., Sammons, P., Siraj-Blatchford, I., Taggart, B. (2008). Effects of the home learning environment and preschool center experience upon literacy and numeracy development in early primary school. Journal of Social Issues, 64, 95–114. First citation in articleCrossrefGoogle Scholar

  • *Metzenleitner, N., Pircher, C., Müller, S. Wirksamkeit eines multikomponentiellen Interventionsprogramms für rechenschwache Kinder [Effectiveness of a multi-component intervention program for children with dyscalculia] 2007, 2010 (Unpublished diploma theses), University of Salzburg, Austria. First citation in articleGoogle Scholar

  • Miller, S. P., Mercer, C. D. (1997). Educational aspects of mathematical disabilities. Journal of Learning Disabilities, 30, 47–56. First citation in articleCrossrefGoogle Scholar

  • Moeller, K., Fischer, U., Cress, U., Nuerk, H.-C. (2012). Diagnostics and intervention in dyscalculia: Current issues and novel perspectives. In Z. Breznitz, O. Rubinsten, V. Molfese, D. L. Molfese (Eds.), Reading, writing, mathematics and the developing brain: Listening to many voices (pp. 233–276). Heidelberg, Germany: Springer. First citation in articleCrossrefGoogle Scholar

  • Morton, V., Torgerson, D. J. (2005). Regression to the mean: Treatment effect without the intervention. Journal of Evaluation in Clinical Practice, 11, 59–65. First citation in articleCrossrefGoogle Scholar

  • Nowak, C., Heinrichs, N. (2008). A comprehensive meta-analysis of triple p-positive parenting program using hierarchical linear modeling: Effectiveness and moderating variables. Clinical Child and Family Psychology Review, 11, 114–144. First citation in articleCrossrefGoogle Scholar

  • *Nunes, T., Bryant, P., Hallett, D., Bell, D., Evans, D. (2009). Teaching children about the inverse relation between addition and subtraction. Mathematical Thinking and Learning: An International Journal, 11, 61–78. First citation in articleCrossrefGoogle Scholar

  • *Opel, A., Zaman, S. S., Khanom, F., Aboud, F. E. (2012). Evaluation of a mathematics program for preprimary children in rural Bangladesh. International Journal of Educational Development, 32, 104–110. First citation in articleCrossrefGoogle Scholar

  • Parsons, S., Bynner, J. (2005). Does numeracy matter more?. London, UK: National Research and Development Centre for Adult Literacy and Numeracy. First citation in articleGoogle Scholar

  • *Ramani, G. B., Siegler, R. S. (2008). Promoting broad and stable improvements in low-income children’s numerical knowledge through playing number board Games. Child Development, 79, 375–394. First citation in articleCrossrefGoogle Scholar

  • *Ramani, G. B., Siegler, R. S. (2011). Reducing the gap in numerical knowledge between low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 32, 146–159. First citation in articleCrossrefGoogle Scholar

  • *Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450–472. First citation in articleCrossrefGoogle Scholar

  • *Rock, J. L., Courtney, R., Handwerk, P. G. (2009). Supplementing a traditional math curriculum with an inquiry-based program: A pilot of Math Out of the Box. [ETS Research Report RR-09–17]. Princeton, NJ: Educational Testing Service. First citation in articleGoogle Scholar

  • Rosenthal, R., Rubin, D. B. (1986). Meta-analytic procedures for combining studies with multiple effects sizes. Psychological Bulletin, 99, 400–406. First citation in articleCrossrefGoogle Scholar

  • Rutter, C. M., Gatsonis, C. A. (2001). A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. Statistics in Medicine, 20, 2865–2884. First citation in articleCrossrefGoogle Scholar

  • *Schoppek, W., Tulis, M. (2010). Enhancing arithmetic and word-problem solving skills efficiently by individualized computer-assisted practice. Journal of Educational Research, 103, 239–252. First citation in articleCrossrefGoogle Scholar

  • *Shin, N., Norris, C., Soloway, E. (2006). Effects of handheld games on students learning in mathematics. In S. A. Barab, K. E. Hay, D. T. Hickey (Eds.), Proceedings of the 7th International Conference of the Learning Sciences, Bloomington 2006 (pp. 702–708). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • *Siegler, R. S., Ramani, G. B. (2008). Playing linear numerical board games promotes low-income children’s numerical development. Developmental Science, 11, 655–661. First citation in articleCrossrefGoogle Scholar

  • *Siegler, R. S., Ramani, G. B. (2009). Playing linear number board games – but not circular ones – improves low-income preschoolers’ numerical understanding. Journal of Educational Psychology, 101, 545–560. First citation in articleCrossrefGoogle Scholar

  • Slavin, R. E. (1986). Best-evidence synthesis: An alternative to meta-analytic and traditional reviews. Educational Researcher, 15, 5–11. First citation in articleGoogle Scholar

  • Slavin, R. E., Lake, C., Groff, C. (2009). Effective programs in middle and high school mathematics: A best-evidence synthesis. Review of Educational Research, 79, 839–911. First citation in articleGoogle Scholar

  • *Tournaki, N. (2003). The differential effects of teaching addition through strategy instruction versus drill and practice to students with and without learning disabilities. Journal of Learning Disabilities, 36, 449–458. First citation in articleCrossrefGoogle Scholar

  • *van Luit, J. E. H., Schopman, E. A. M. (2000). Improving early numeracy of young children with special educational needs. Remedial and Special Education, 21, 27–40. First citation in articleCrossrefGoogle Scholar

  • von Aster, M., Schweiter, M., Weinhold-Zulauf, M. (2007). Rechenstörungen bei Kindern: Vorläufer, Prävalenz und psychische Symptome. [Developmental dyscalculia: Precursors, prevalence, and comorbidity] Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 39, 85–96. First citation in articleLinkGoogle Scholar

  • What Works Clearinghouse . (September 2011). WWC Procedures and Standards Handbook (Version 2.1). Retrieved from ies.ed.gov/ncee/wwc/pdf/reference_resources/wwc_procedures_v2_1_standards_handbook.pdf. First citation in articleGoogle Scholar

  • *Wijekumar, K., Hitchcock, J., Turner, H., Lei, P., Peck, K. (2009). A multisite cluster randomized trial of the effects of CompassLearning Odyssey® Math on the math achievement of selected grade 4 students in the mid-Atlantic region (NCEE 2009-4068). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, US Department of Education. First citation in articleGoogle Scholar

  • *Wilson, A. J., Dehaene, S., Dubois, O., Fayol, M. (2009). Effects of an adaptive game intervention on accessing number sense in low-socioeconomic-status kindergarten children. Mind, Brain, and Education, 3, 224–234. First citation in articleCrossrefGoogle Scholar

  • *Witzel, B. S., Mercer, C. D., Millder, M. D. (2003). Teaching algebra to students with learning difficulties: An investigation of an explicit instruction model. Learning Disabilities Research & Practice, 18, 121–131. First citation in articleCrossrefGoogle Scholar

  • *Woodward, J., Brown, C. (2006). Meeting the curricular needs of academically low-achieving students in middle grade mathematics. The Journal of Special Education, 40, 151–159. First citation in articleCrossrefGoogle Scholar

  • World Health Organization . (1992/2007). International statistical classification of disease and related health problems. Tenth Revision (ICD-10, Version 2007). Geneva, Switzerland: World Health Organization. First citation in articleGoogle Scholar

  • Wortman, P. M., Bryant, F. B. (1985). School desegregation and Black achievement: An integrative review. Sociological Methods and Research, 13, 289–324. First citation in articleCrossrefGoogle Scholar

  • Xin, P. X., Jitendra, A. K. (1999). The effects of instruction in solving mathematical word problems for students with learning problems: A meta-analysis. The Journal of Special Education, 32, 207–225. First citation in articleCrossrefGoogle Scholar

  • *Yang, D.-C., Wu, W.-R. (2010). The study of number sense: Realistic activities integrated into third-grade math classes in Taiwan. Journal of Educational Research, 103, 379–392. First citation in articleCrossrefGoogle Scholar

  • *Ysseldyke, J., Tardrew, S. (2007). Use of a progress monitoring system to enable teachers to differentiate mathematics instruction. Journal of Applied School Psychology, 24, 1–28. First citation in articleCrossrefGoogle Scholar