Skip to main content
Review

Recent Developments of Ambulatory Assessment Methods

An Overview of Current Technologies and Implications for Neuropsychology

Published Online:https://doi.org/10.1024/1016-264X/a000143

Ambulatory assessment of emotional states as well as psychophysiological, cognitive and behavioral reactions constitutes an approach, which is increasingly being used in psychological research. Due to new developments in the field of information and communication technologies and an improved application of mobile physiological sensors, various new systems have been introduced. Methods of experience sampling allow to assess dynamic changes of subjective evaluations in real time and new sensor technologies permit a measurement of physiological responses. In addition, new technologies facilitate the interactive assessment of subjective, physiological, and behavioral data in real-time. Here, we describe these recent developments from the perspective of engineering science and discuss potential applications in the field of neuropsychology.


Aktuelle Entwicklungen für das ambulante Assessment – eine Übersicht über neueste Technologien und Implikationen für die Neuropsychologie

Die ambulante Erfassung emotionaler, kognitiver und behavioraler Parameter sowie die Registrierung psychophysiologischer Beanspruchungsreaktionen gewinnen heutzutage in der Psychologie einen immer größeren Stellenwert. Befördert durch Neuentwicklungen in der Kommunikationstechnologie und die mittlerweile relativ unkomplizierte Anwendbarkeit tragbarer physiologischer Sensoren stehen immer mehr Systeme für den Einsatz unter Alltagsbedingungen zur Verfügung. Verfahren wie das Experience Sampling werden eingesetzt, um dynamische Veränderungen subjektiver Selbsteinschätzungen in Echtzeit zu erfassen; psychophysiologische Sensoren geben Auskunft über physiologische Beanspruchungsreaktionen. Neueste interaktive Assessmentstrategien ermöglichen es, Wechselwirkungen zwischen subjektiven, physiologischen und behavioralen Reaktionen in Echtzeit zu erfassen. Der Artikel beschreibt die neuesten Entwicklungen aus Sicht der Ingenieurwissenschaften und zeigt Anwendungsmöglichkeiten im Bereich der Neuropsychologie auf.

References

  • Abowd, G. D. , Dey, A. K. , Brown, P. J. , Davies, N. , Smith, M. , Steggles, P. (1999). Towards a better understanding of context and context-awareness. Proceedings of the 1st international symposium on Handheld and Ubiquitous Computing, 304 – 307. First citation in articleCrossrefGoogle Scholar

  • Ahuja, N. D. , Agarwal, A. K. , Mahajan, N. M. , Mehta, N. H. , Kapadia, H. N. (2003). GSR and HRV: its application in clinical diagnosis. Proceedings of the 16th IEEE Symposium of Computer-Based Medical Systems, 279 – 283. First citation in articleGoogle Scholar

  • Alkan, A. , Sahin, Y. G. , Karlik, B. (2006). A novel mobile epilepsy warning system. Proceedings of the 19th Australian joint conference on Artificial Intelligence: Advances in Artificial Intelligence, 4304, 922 – 928. First citation in articleGoogle Scholar

  • Anastasopoulou, P. , Antonopoulos, C. , Shgir, H. , Krikis, G. , Voros, N. S. , Hey, S. (2012). Mobile multi-parametric sensor system for diagnosis of epilepsy and brain related disorders. Proceedings of the 3rd International Conference on Wireless Mobile Communication and Healthcare, 61, 207 – 214. First citation in articleCrossrefGoogle Scholar

  • Anastasopoulou, P. , Tansella, M. , Stumpp, J. , Shammas, L. , Hey, S. (2012). Classification of human physical activity and energy expenditure estimation by accelerometry and barometry. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 6451 – 6454. First citation in articleCrossrefGoogle Scholar

  • Bassett, D. R. , Strath, S. J. (2002). Use of pedometers to assess physical activity. In Welk, G. J. (Eds.), Physical activity assessments for health-related research (pp. 164 – 178). Champaign, IL: Human Kinetics. First citation in articleGoogle Scholar

  • Bassett, D. R. , John, D. (2010). Use of pedometers and accelerometers in clinical populations: validity and reliability issues. Physical Therapy Reviews, 15, 135 – 142. First citation in articleCrossrefGoogle Scholar

  • Boucsein, W. (2012). Electrodermal activity. Boston, MA: Springer Science and Business Media, LLC. First citation in articleGoogle Scholar

  • Bussmann, J. B. , Ebner-Priemer, U. W. , Fahrenberg, J. (2009). Ambulatory activity monitoring. European Psychologist, 14, 142 – 152. First citation in articleLinkGoogle Scholar

  • Conradsen, I. , Beniczky, S. , Wolf, P. , Terney, D. , Sams, T. , Sorensen, H. (2010). Multi-modal intelligent seizure acquisition (MISA) system – A new approach towards seizure detection based on full body motion measures. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2591 – 2595. First citation in articleGoogle Scholar

  • Csikszentmihalyi, M. , Larson, R. (1987). Validity and reliability of the Experience-Sampling Method. The Journal of Nervous and Mental Disease, 175, 526 – 536. First citation in articleCrossrefGoogle Scholar

  • Dai, S. , Zhang, Y. (2006). A wireless physiological multi-parameter monitoring system based on mobile communication Networks. IEEE International Symposium on Computer-Based Medical Systems, 473 – 478. First citation in articleGoogle Scholar

  • Ebner-Priemer, U. W. , Kubiak, T. (2007). Psychological and psychophysiological qmbulatory monitoring. European Journal of Psychological Assessment, 23, 214 – 226. First citation in articleLinkGoogle Scholar

  • Ebner-Priemer, U. W. , Koudela, S. , Mutz, G. , Kanning, M. (2013). Interactive multimodal ambulatory monitoring to investigate the association between physical activity and affect. Frontiers in Psychology, 3, 49 – 56. First citation in articleCrossrefGoogle Scholar

  • Fahrenberg, J. , Leonhart, R. , Foerster, F. (2002). Alltagsnahe Psychologie: Datenerhebung im Feld mit hand-held PC und physiologischem Mess-System. Bern: Huber. First citation in articleGoogle Scholar

  • Fahrenberg, J. , Myrtek, M. , Pawlik, K. , Perrez, M. (2007). Ambulatory assessment – Monitoring behavior in daily life settings. European Journal of Psychological Assessment, 23, 206 – 213. First citation in articleLinkGoogle Scholar

  • Froehlich, J. , Chen, M. Y. , Consolvo, S. , Harrison, B. , Landay, J. A. (2007). MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones. Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, 57 – 70. First citation in articleCrossrefGoogle Scholar

  • Fuhrhop, S. , Lamparth, S. , Kirst, M. , Wagner, G. v. , Ottenbacher, J. (2009). Ambulant ECG recording with wet and dry electrodes: a direct comparison of two systems. World Congress on Medical Physics and Biomedical Engineering, 305 – 307. First citation in articleGoogle Scholar

  • Gellersen, H. W. , Schmidt, A. , Beigl, M. (2002). Multi-sensor context-awareness in mobile devices and smart artifacts. Mobile Networks and Applications, 7, 341 – 351. First citation in articleCrossrefGoogle Scholar

  • Gouravajhala, S. R. , Khuon, L. (2012). A multi-modality sensor platform approach to detect epileptic seizure activity. 38th Annual Northeast Bioengineering Conference, 233 – 234. First citation in articleCrossrefGoogle Scholar

  • Győrbíró, N. , Fábián, Á. , Hományi, G. (2009). An activity recognition system for mobile phones. Mobile Networks and Applications, 14, 82 – 91. First citation in articleCrossrefGoogle Scholar

  • Hall, J. B. (2008). Brush up on Bluetooth. GSEC Practical Assignment. First citation in articleGoogle Scholar

  • Hey, S. (2014). Context-aware sensing and multi-sensor fusion. In Nikita, K. S. (Ed.), Handbook of biomedical telemetry. Hoboken, NJ: Wiley-IEEE Press. First citation in articleGoogle Scholar

  • Hey, S. , Anastasopoulou, P. , Haaren, B. von (2014). Erfassung körperlicher Aktivität mittels Akzelerometrie – Möglichkeiten und Grenzen aus technischer Sicht. Bewegungstherapie und Gesundheitssport, 30, 73 – 78. First citation in articleCrossrefGoogle Scholar

  • Jones, V. M. , Huis in’t Veld, R. , Tonis, T. , Bults, R. B. , van Beijnum, B. , Widya, I. et al. (2008). Biosignal and context monitoring: Distributed multimedia applications of Body Area Networks in healthcare. 10th IEEE Workshop on Multimedia Signal Processing, 820 – 825. First citation in articleGoogle Scholar

  • Kempcke, R. , Schultheiß, T. , Sobek, S. , Thomas, K. , Shammas, L. , Hey, S. et al. (2012). Measurement of daily mobility under fampridine-therapy with Movisens-system in patients with multiple sclerosis. ECTRIMS 28th Congress of the European Committee for Treatment and Research in Multiple Sclerosis. First citation in articleGoogle Scholar

  • Kubiak, T. , Krog, K. (2008). Computerized sampling of experiences and behavior. In M. R. Mehl & T. S. Conner (Eds.). Handbook of research methods for studying daily life. New York: Guilford. First citation in articleGoogle Scholar

  • Kunze, C. , Grossmann, U. , Stork, W. , Müller-Glaser, K. D. (2002). Application of ubiquitous computing in personal health monitoring systems. Biomedizinische Technik, 47, Suppl. 1, 360 – 362. First citation in articleGoogle Scholar

  • Lee, J. , Kapitanova, K. , Son, S. H. (2010). The price of security in wireless sensor networks. Computer Networks, 54, 2967 – 2978. First citation in articleCrossrefGoogle Scholar

  • Loeffler, S. N. , Myrtek, M. , Peper, M. (2013). Mood-congruent memory in daily life: Evidence from interactive ambulatory monitoring. Biological Psychology, 93, 308 – 315. First citation in articleCrossrefGoogle Scholar

  • Loeffler, S. N. , Peper, M. (2014). Affect and memory in real life: evaluating the utility of interactive ambulatory assessment. Zeitschrift für Neuropsychologie, 25, 267 – 278. First citation in articleLinkGoogle Scholar

  • Lorincz, K. , Chen, B.-r. , Challen, G. W. , Chowdhury, A. R. , Patel, S. , Bonato, P. et al. (2009). Mercury: a wearable sensor network platform for high-fidelity motion analysis. Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, 183 – 196. First citation in articleGoogle Scholar

  • Melanson, E. L. , Knoll, J. R. , Bell, M. L. , Donahoo, W. T. , Hill, J. O. , Nysse, L. J. et al. (2004). Commercially available pedometers: considerations for accurate step counting. Preventive Medicine, 39, 361 – 368. First citation in articleCrossrefGoogle Scholar

  • Ming-Zher Poh, Swenson , N. C. & Picard, R. W. (2010). A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering, 57, 1243 – 1252. First citation in articleCrossrefGoogle Scholar

  • Peper, M. , Loeffler, S. N. (2014). Neuropsychology in the real world: Applications and implications of ambulatory assessment. Zeitschrift für Neuropsychologie, 25, 233 – 238. First citation in articleGoogle Scholar

  • Ponnusamy, A. , Marques, J. L.B. , Reuber, M. (2012). Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia, 53, 1314 – 1321. First citation in articleCrossrefGoogle Scholar

  • Schilit, B. , Adams, N. , Want, R. (1994). Context-aware computing applications. Proceedings of the 1994 First Workshop on Mobile Computing Systems and Applications, 85 – 90. First citation in articleGoogle Scholar

  • Shammas, L. , Zentek, T. , Anastasopoulou, P. , Rashid, A. , Hey, S. (2011). Multi-parameter activity monitoring system to support patients with multiple sclerosis. 45. Jahrestagung der DGBMT. First citation in articleGoogle Scholar

  • Shammas, L. , Zentek, T. , Haaren, B. von , Schlesinger, S. , Hey, S. , Rashid, A. (2014). Home-based system for physical activity monitoring in patients with multiple sclerosis (pilot study). BioMedical Engineering OnLine, 13, 10. First citation in articleCrossrefGoogle Scholar

  • Strano, S. , Lino, S. , Calcagnini, G. , Di Virgilio, V. , Ciardo, R. , Cerutti, S. et al. (1998). Respiratory sinus arrhythmia and cardiovascular neural regulation in athletes. Medicine and Science in Sports and Exercise, 30, 215 – 219. First citation in articleCrossrefGoogle Scholar

  • Youssef, M. , Yosef, M. A. , El-Derini, M. (2010). GAC: Energy-Efficient Hybrid GPS-Accelerometer-Compass GSM Localization. Global Telecommunications Conference, 1 – 5. First citation in articleGoogle Scholar