Skip to main content
Published Online:https://doi.org/10.1024/2235-0977/a000258

Zusammenfassung. Unter Rechenschwäche versteht man unterdurchschnittliche Rechenleistungen, die gemessen an einer sozialen Bezugsnorm unterhalb tolerierbarer Abweichungen liegen. Die Größe der Abweichung wird in wissenschaftlichen Studien oft willkürlich gewählt und liegt zwischen 0.5 und 2 Standardabweichungen unterhalb des Verteilungsmittelwerts (Cut-off). Dies hat nicht nur Auswirkungen auf die Identifikation schwacher Rechner, sondern auch auf die Vergleichbarkeit und Aussagekraft empirischer Studien. Diese Studie prüft, ob sich in Abhängigkeit vom verwendeten Cut-off unterschiedliche Zusammenhänge zur Rechenschwäche mit Arbeitsgedächtnisleistungen, Leistungen bei (non-)symbolischen Mengenvergleichen und für das arithmetische Faktenwissen aufzeigen lassen. Dazu wurden die Leistungen zwei distinkter Gruppen schwach rechnender Kinder (T ≤ 35 vs. 35 < T < 40) sowie einer Kontrollgruppe durchschnittlich rechnender Kinder (T ≥ 40) verglichen. Nur bei Verwendung eines strengen Cut-off (T ≤ 35) zeigten sich Zusammenhänge der Rechenschwäche mit dem visuell-räumlichen Arbeitsgedächtnis und symbolischen Mengenvergleichen. Bei der Bearbeitung von Aufgaben zum basalen arithmetischen Faktenwissen wurden zwischen den beiden Gruppen schwacher Rechner unterschiedliche Rechenstrategien festgestellt. Die Ergebnisse werden in Hinblick auf die heterogene Befundlage zu kognitiven Bedingungen der Rechenschwäche und bezüglich möglicher Implikationen für die pädagogisch-psychologische Praxis diskutiert.


Do the cognitive profiles of children with mathematical difficulties vary as a function of the used cut-off criterion?

Abstract. Poor mathematical performance that is significantly below average for age is a diagnostic feature in defining mathematical difficulties (MD). It is debatable to which extent the academic achievement has to be below average, resulting in different cut-off criteria in defining MD. These criteria range from 0.5 to 2 standard deviations, classifying 2 up to 30 % of a population as having MD. Recruiting different samples in the field of research on MD results in heterogeneous, and in terms of comparability, limited findings. This is also true for studies on cognitive factors such as working memory, the processing of symbolic and non-symbolic magnitudes, and arithmetic fact retrieval. In order to explore whether the heterogeneous findings are attributable to different cut-offs used, we compare the performances of two distinct groups of children with MD resulting from two cut-off criteria (MD-35: T ≤ 35 vs. MD-40: 35 < T < 40) and a group of average achieving children (ND: T ≥ 40). Concerning visual-spatial working memory and the processing of symbolic magnitudes, only the MD group resulting from a strict criterion (T ≤ 35) lagged significantly behind the ND group, whereas the use of a lenient criterion did not result in differences between the MD and ND group. Both groups of children with MD further differed in the use of strategy while solving simple additions. These findings indicate that results concerning MD may vary as a function of the cut-off used.

Literatur

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (Bd. 5). Arlington, VA: American Psychiatric Publishing. First citation in articleCrossrefGoogle Scholar

  • Andersson, U. & Lyxell, B. (2007). Working memory deficit in children with mathematical difficulties: A general or specific deficit? Journal of Experimental Child Psychology, 96, 197 – 228. First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. (1986). Working memory. Oxford: Clarendon Press. First citation in articleGoogle Scholar

  • Birkel, P. (2007). Weingartener Grundwortschatz Rechtschreib-Test für zweite und dritte Klassen: WRT 2+. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Bull, R., Johnston, R. S. & Roy, J. A. (1999). Exploring the roles of the visual-spatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology. Developmental Neuropsychology, 15, 421 – 442. First citation in articleCrossrefGoogle Scholar

  • Busch, J., Schmidt, C. & Grube, D. (2015). Arithmetic fact retrieval – are there differences between children with developmental dyscalculia and those with mathematical difficulties? Zeitschrift für Psychologie, 223, 110 – 119. First citation in articleLinkGoogle Scholar

  • Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 3 – 18. First citation in articleCrossrefGoogle Scholar

  • Büttner, G. & Hasselhorn, M. (2011). Learning disabilities: Debates on definitions, causes, subtypes, and responses. International Journal of Disability, Development and Education, 58, 75 – 87. First citation in articleCrossrefGoogle Scholar

  • Cattell, R. B., Weiß, R. H. & Osterland, J. (1997). Grundintelligenztest Skala 1: CFT 1. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2. ed.). Hillsdale: Erlbaum. First citation in articleGoogle Scholar

  • Deutsche Gesellschaft für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie e. V. (DGKJP). (2018). S3 – Leitlinie: Diagnostik und Behandlung der Rechenstörung. First citation in articleGoogle Scholar

  • Dilling, H., Mombour, W. & Schmidt, M. H. (2005). Internationale Klassifikation psychischer Störungen: ICD-10 Kapitel V (F); Klinisch-diagnostische Leitlinien (5. Aufl.). Bern: Huber. First citation in articleGoogle Scholar

  • Dilling, H., Mombour, W. & Schmidt, M. H. (2011). Internationale Klassifikation psychischer Störungen: ICD-10 Kapitel V (F); Diagnostische Kriterien für Forschung und Praxis. (5. Aufl.). Bern: Huber. First citation in articleGoogle Scholar

  • Ehlert, A., Schroeders, U. & Fritz-Stratmann, A. (2012). Kritik am Diskrepanzkriterium in der Diagnostik von Legasthenie und Dyskalkulie. Lernen und Lernstörungen, 1, 169 – 184. First citation in articleLinkGoogle Scholar

  • Feigenson, L., Dehaene, S. & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307 – 314. First citation in articleCrossrefGoogle Scholar

  • Field, A. (2011). Discovering statistics using IBM SPSS statistics. Los Angeles: Sage. First citation in articleGoogle Scholar

  • Fischbach, A., Schuchardt, K., Brandenburg, J., Klesczewski, J., Balke-Melcher, C., Schmidt, C.et al.(2013). Prävalenz von Lernschwächen und Lernstörungen: Zur Bedeutung der Diagnosekriterien. Lernen und Lernstörungen, 2, 65 – 76. First citation in articleLinkGoogle Scholar

  • Friso-van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H. & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29 – 44. First citation in articleCrossrefGoogle Scholar

  • Fritz, A. & Ricken, G. (2008). Rechenschwäche. München: Reinhardt. First citation in articleCrossrefGoogle Scholar

  • Fürst, A. J. & Hitch, G. J. (2000). Separate roles for executive and phonological components of working memory in mental arithmetic. Memory & Cognition, 28, 774 – 782. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L. & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343 – 1359. First citation in articleCrossrefGoogle Scholar

  • Gebuis, T. & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642 – 648. First citation in articleCrossrefGoogle Scholar

  • Grob, A., Meyer, C. S. & Hagmann-von Arx, P. (2009). Intelligence and development scales (IDS).Bern: Hans Huber. First citation in articleGoogle Scholar

  • Grube, D. (2006). Entwicklung des Rechnens im Grundschulalter: Basale Fertigkeiten, Wissensabruf und Arbeitsgedächtniseinflüsse. Münster: Waxmann. First citation in articleGoogle Scholar

  • Grube, D. (2008). Rechenschwäche. In W. SchneiderM. Hasselhorn (Hrsg.), Handbuch der Pädagogischen Psychologie (S. 642 – 652). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Hasselhorn, M., Schuman-Hengsteler, R., Gronauer, J., Grube, D., Mähler, C., Schmid, I.et al.(2012). Arbeitsgedächtnistestbatterie für Kinder von 5 bis 12 Jahren: AGTB 5 – 12 Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Heathcote, D. (1994). The role of visuo-spatial working memory in the mental addition of multi-digit addends. Current Psychology of Cognition, 13, 207 – 245. First citation in articleGoogle Scholar

  • Hitch, G., Cundick, J., Haughey, M., Pugh, R. & Wright, H. (1987). Aspects of counting in children’s arithmetic. In J. A. SlobodaD. Rogers (Hrsg.), Cognitive processes in mathematics. (pp. 26 – 41) Oxford: Clarendon Press. First citation in articleGoogle Scholar

  • Ise, E. & Schulte-Körne, G. (2013). Symptomatik, Diagnostik und Behandlung der Rechenstörung. Zeitschrift für Kinder-und Jugendpsychiatrie und Psychotherapie, 41, 271 – 282. First citation in articleLinkGoogle Scholar

  • Jordan, N. C. & Montani, T. O. (1997). Cognitive arithmetic and problem solving: A comparison of children with specific and general mathematics difficulties. Journal of learning disabilities, 30, 624 – 634. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. (2002). More evidence for the role of the central executive in retrieving arithmetic facts – A case study of severe developmental dyscalculia. Journal of Clinical and Experimental Neuropsychology, 24, 302 – 310. First citation in articleCrossrefGoogle Scholar

  • Krajewski, K., Liehm, S. & Schneider, W. (2004). DEMAT 2+: Deutscher Mathematiktest für zweite Klassen. Göttingen: Beltz Test. First citation in articleGoogle Scholar

  • Lambert, K. (2015). Rechenschwäche: Grundlagen, Diagnostik und Förderung. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Landerl, K. (2013). Development of numerical processing in children with typical and dyscalculic arithmetic skills – a longitudinal study. Frontiers in Psychology, 4, Zugriff am 12.02.18Verfügbar unter:https://www.frontiersin.org/. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103, 546 – 565. First citation in articleCrossrefGoogle Scholar

  • Lenhard, W. & Schneider, W. (2006). Ein Leseverständnistest für Erst- bis Sechstklässler: ELFE 1 – 6. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Logie, R. H. (1995). Visuo-spatial working memory. Hove: Erlbaum. First citation in articleGoogle Scholar

  • Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D. C. & Menon, V. (2010). Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders. Learning and Individual Differences, 20, 101 – 109. First citation in articleCrossrefGoogle Scholar

  • Murphy, M. M., Mazzocco, M. M. M., Hanich, L. B. & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40, 458 – 478. First citation in articleCrossrefGoogle Scholar

  • Raghubar, K. P., Barnes, M. A. & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110 – 122. First citation in articleCrossrefGoogle Scholar

  • Rousselle, L. & Noël, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102, 361 – 395. First citation in articleCrossrefGoogle Scholar

  • Schuchardt, K. & Mähler, C. (2010). Unterscheiden sich Subgruppen rechengestörter Kinder in ihrer Arbeitsgedächtniskapazität, im basalen arithmetischen Faktenwissen und in den numerischen Basiskompetenzen? Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 42, 217 – 225. First citation in articleLinkGoogle Scholar

  • Schwenk, C., Sasanguie, D., Kuhn, J.-T., Kempe, S., Doebler, P. & Holling, H. (2017). (Non-) symbolic magnitude processing in children with mathematical difficulties: a meta-analysis. Research in Developmental Disabilities, 64, 152 – 167. First citation in articleCrossrefGoogle Scholar

  • Siegler, R. S. & Shipley, C. (1995). Variation, selection, and cognitive change. In T. SimonG. Halford (Hrsg.), Developing cognitive competence: New approaches to process modeling (S. 31 – 76). Hillsdale: Erlbaum. First citation in articleGoogle Scholar

  • Smedt, B., De Noël, M.-P., Gilmore, C. & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48 – 55. First citation in articleCrossrefGoogle Scholar

  • Tolar, T. D., Fuchs, L., Fletcher, J. M., Fuchs, D. & Hamlett, C. L. (2014). Cognitive profiles of mathematical problem solving learning disability for different definitions of disability. Journal of Learning Disabilities, 49, 240 – 256. First citation in articleCrossrefGoogle Scholar

  • De Visscher, A. & Noël, M.-P. (2014). Arithmetic facts storage deficit: The hypersensitivity-to-interference in memory hypothesis. Developmental Science, 17, 434 – 442. First citation in articleCrossrefGoogle Scholar

  • Vanbinst, K., Ghesquiere, P. & De Smedt, B. (2012). Numerical magnitude representations and individual differences in children’s arithmetic strategy use. Mind, Brain, and Education, 6, 129 – 136. First citation in articleCrossrefGoogle Scholar

  • Vanbinst, K., Ghesquiere, P. & De Smedt, B. (2014). Arithmetic strategy development and its domain-specific and domain-general cognitive correlates: A longitudinal study in children with persistent mathematical learning difficulties. Research in Developmental Disabilities, 35, 3001 – 3013. First citation in articleCrossrefGoogle Scholar

  • Warnke, A., Martinius, J. & Amorosa, H. (1997). Empfehlungen zu den Kriterien für das ärztliche Gutachten im Rahmen der Eingliederungshilfe nach § 35a SGB VIII bei vorhandener oder drohender seelischer Behinderung. Zugriff am: 12.04.18Verfügbar unter: https://www.bvl-legasthenie.de/images/static/pdfs/bvl/empfehlung_kriterien_35a.pdf. First citation in articleGoogle Scholar

  • Weerdt, F., De Desoete, A. & Roeyers, H. (2013). Working Memory in Children With Reading Disabilities and / or Mathematical Disabilities. Journal of Learning Disabilities, 46, 461 – 472. First citation in articleCrossrefGoogle Scholar

  • West, S. G., Cham, H., Thoemmes, F., Renneberg, B., Schulze, J. & Weiler, M. (2014). Propensity scores as a basis for equating groups: Basic principles and application in clinical treatment outcome research. Journal of Consulting and Clinical Psychology, 82, 906 – 919. First citation in articleCrossrefGoogle Scholar

  • Wilson, K. M. & Swanson, H. L. (2001). Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? Journal of Learning Disabilities, 34, 237 – 248. First citation in articleCrossrefGoogle Scholar

  • Wong, T. T.-Y., Ho, C. S.-H. & Tang, J. (2017). Defective number sense or impaired access? Differential impairments in different subgroups of children with mathematics difficulties. Journal of Learning Disabilities, 50, 49 – 61. First citation in articleCrossrefGoogle Scholar