Skip to main content
Original Article

Coordination as a Crucial Component of Performance on a Sustained Attention Test

Evidence From the Digit-Symbol Substitution Test

Published Online:https://doi.org/10.1027/1614-0001/a000044

Coordination is a well-known concept in experimental psychology. The coordination of action patterns was also proposed as a key determinant in paper-pencil sustained attention/concentration tests. To date, however, no studies have tried to prove the relevance of coordination ability in sustained attention tests. We conducted two studies (n = 199 and n = 132) to experimentally vary a prominent sustained attention tests: the Digit-Symbol Substitution Test. Using an approach derived from multitasking research, we extracted a residual that presumably comprised variance due to coordination. This presumption was confirmed in Study 1: The coordination ability was stable, correlated significantly with other paper-pencil sustained attention tests, and was also related to the executive function switching. In Study 2, a different approach led to similar results: We could show that practice gains can be attributed to an improved ability to coordinate basic action patterns. It is concluded that coordination is a core element of sustained attention/concentration.

References

  • Ackerman, P. L., Cianciolo, A. T. (2000). Cognitive, perceptual-speed, and psychomotor determinants of individual differences during skill acquisition. Journal of Experimental Psychology: Applied, 6, 259–290. First citation in articleCrossrefGoogle Scholar

  • Ackerman, P. L., Schneider, W. , Wickens, C. D. (1984). Deciding the existence of a time sharing ability: A combined methodological and theoretical approach. Human Factors, 26, 71–82. First citation in articleGoogle Scholar

  • Amthauer, R., Brocke, B. , Liepmann, D. , Beauducel, A. (2001). Intelligenz-Struktur-Test 2000 R (I-S-T 2000 R) [Intelligence Structure Test 2000 R (I-S-T 2000 R)]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Brickenkamp, R. (2002). Test d2: Aufmerksamkeits-Belastungs-Test (9., überarbeitete und neu normierte Auflage) [The d2 test – A timed test of selective attention (9th revised ed.)]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Buehner, M. (2001). Die Bedeutung von mentaler Operation und Material bei der Erfassung der Konzentrationstest-Leistung: Ein Beitrag zur Validität von Durchstreichtests [The relevance of mental operations and test material for the assessment of concentration test performances: A contribution to the validity of cancellation tests]. Hamburg: Kovac. First citation in articleGoogle Scholar

  • Dueker, H. (1957). Leistungsfähigkeit und Keimdrüsenhormone [Ability and the gonads]. München: J. A. Barth. First citation in articleCrossrefGoogle Scholar

  • Engle, R. W., Tuholski, S. W. , Laughlin, J. E., Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128, 309–331. First citation in articleCrossrefGoogle Scholar

  • Faul, F. , & Erdfelder, E. (1992). GPOWER: A priori, posthoc, and compromise power analyses for MS-DOS [Computer program]. Bonn: Dept. of Psychology, Bonn University, Germany First citation in articleGoogle Scholar

  • Flehmig, H. C., Steinborn, M. , Langner, R. , Scholz, A. , & Westhoff, K. (2007). Assessing intraindividual variability in sustained attention: Reliability, relation to speed and accuracy, and practice effects. Psychology Science, 49, 132–149. First citation in articleGoogle Scholar

  • Gilmore, G. C., Royer, F. L., Gruhn, J. J. , Esson, M. (2004). Symbol-digit substitution and individual differences in visual search ability. Intelligence, 32, 47–64. First citation in articleCrossrefGoogle Scholar

  • Glass, G. V., McGraw, B. , Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills, CA: Sage. First citation in articleGoogle Scholar

  • Hagemeister, C. , Westhoff, K. (1993). The first law of concentration error rate. Proceedings of Fourth International Facet Theory Conference, Prague, Czech Republic, 1993, 166–175. First citation in articleGoogle Scholar

  • Hagendorf, H. , Sa, B. (1996). Coordination processes of mental transformations of patterns: Practice and transfer effects. European Journal of Cognitive Psychology, 8, 295–317. First citation in articleCrossrefGoogle Scholar

  • Hinton-Bayre, A. , Geffen, G. (2005). Comparability, reliability, and practice effects on alternate forms of the digit symbol substitution and symbol digit modalities tests. Psychological Assessment, 17, 237–241. First citation in articleCrossrefGoogle Scholar

  • Jaeger, A. O., Suess, H. M. , Beauducel, A. (1997). Berliner Intelligenzstruktur-Test (BIS) [Berlin Intelligence Structure Test (BIS)]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Krumm, S. , Schmidt-Atzert, L., Buehner, M. , Ziegler, M. , Michalczyk, K. , Arrow, K. (2009). Storage and nonstorage components of working memory predicting reasoning: A simultaneous examination of a wide range of ability factors. Intelligence, 37, 347–364. First citation in articleCrossrefGoogle Scholar

  • Krumm, S. , Schmidt-Atzert, L. , Eschert, S. (2008). Investigating the structure of attention: How do test characteristics of paper-pencil sustained attention tests influence their relationship with other attention tests? European Journal of Psychological Assessment, 24, 108–116. First citation in articleLinkGoogle Scholar

  • Lezak, M. D. (1995). Neuropsychological assessment (3rd ed.). Oxford University Press. First citation in articleGoogle Scholar

  • Marschner, G. (1980). Revisions-Test [Revision test]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Mirsky, A. F., Anthony, B. J., Duncan, C. C. , Ahearn, M. B., Kellam, S. G. (1991). Analysis of the elements of attention: A neuropsychological approach. Neuropsychology Review, 2, 109–145. First citation in articleCrossrefGoogle Scholar

  • Moosbrugger, H., Goldhammer, F. , Schweizer, K. (2006). Latent factors underlying individual differences in attention measures – perceptual and executive attention. European Journal of Psychological Assessment, 22, 177–188. First citation in articleLinkGoogle Scholar

  • Moosbrugger, H. , Oehlschlaegel, J. (1996). FAIR Frankfurter Aufmerksamkeits-Inventar [Frankfurt attention inventory]. Bern: Huber. First citation in articleGoogle Scholar

  • Neubauer, A. C. , Knorr, E. (1997). Elementary cognitive processes in choice reaction time tasks and their correlations with intelligence. Personality and Individual Differences, 23, 715–728. First citation in articleCrossrefGoogle Scholar

  • Norman, D. A., Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson G. E. Schwartz D. Shapiro, Eds., Consciousness and self-regulation: Advances in research and theory (pp. 1–18). New York: Plenum. First citation in articleCrossrefGoogle Scholar

  • Oberauer, K., Suess, H. M. , Wilhelm, O. , Sander, N. (2007). Individual differences in working memory capacity and reasoning ability. In A. R. A. Conway C. Jarrold M. J. Kane A. Miyake J. N. Towse, Eds., Variation in working memory (pp. 49–75). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Oberauer, K., Suess, H. M. , Wilhelm, O. , Wittmann, W. W. (2003). The multiple faces of working memory: Storage, processing, supervision, and coordination. Intelligence, 31, 167–193. First citation in articleCrossrefGoogle Scholar

  • Oswald, W. D., Roth, E. (1987). Der Zahlen-Verbindungs-Test (ZVT) (2. Aufl.) [Number combination test, 2nd ed.]. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Petrill, S. A., Luo, D. , Thompson, L. A., Detterman, D. K. (2001). Inspection time and the relationship among elementary cognitive tasks, general intelligence and specific cognitive abilities. Intelligence, 29, 487–496. First citation in articleCrossrefGoogle Scholar

  • Schmidt-Atzert, L., Buehner, M. , Enders, P. (2006). Messen Konzentrationstests Konzentration? Eine Analyse von Konzentrationstestleistungen [Do concentration tests assess concentration? Analysis of the components of concentration test performances]. Diagnostica, 52, 33–44. First citation in articleLinkGoogle Scholar

  • Schweizer, K. (2005). An overview of research into the cognitive basis of intelligence. Journal of Individual Differences, 26, 43–51. First citation in articleLinkGoogle Scholar

  • Steinborn, M. B., Flehmig, H. C., Westhoff, K. , Langner, R. (2009). Differential effects of prolonged work on performance measures in self-paced speed tests. Advances in Cognitive Psychology, 5, 105–113. First citation in articleCrossrefGoogle Scholar

  • Stemmler, G., Heldmann, M., Pauls, C. A. , Scherer, T. (2001). Constraints for emotion specificity in fear and anger: The context counts. Psychophysiology, 38, 275–291. First citation in articleCrossrefGoogle Scholar

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale – Third edition (WAIS–III). San Antonio, TX: Harcourt Assessment. First citation in articleGoogle Scholar

  • Westhoff, K. (1995). Aufmerksamkeit und Konzentration [Attention and concentration]. In M. Amelang, (Ed.), Verhaltens- und Leistungsunterschiede [Encyclopedia of psychology: Behavioral and performance differences] (pp. 375–402). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Westhoff, K. , Dewald, D. (1990). Effekte der Übung in der Bearbeitung von Konzentrationstests [Effects of practice in preparing for concentration tests]. Diagnostica, 36, 1–15. First citation in articleGoogle Scholar

  • Yee, P. L. , Hunt, E. , & Pellegrino, J. W. (1991). Coordinating cognitive information: Task effects and individual differences in integrating information from several sources. Cognitive Psychology, 23, 615–680. First citation in articleCrossrefGoogle Scholar