Skip to main content
Übersichtsarbeit

Lesen, Schreiben, Rechnen – gibt es Unterschiede zwischen den Geschlechtern?

Published Online:https://doi.org/10.1024/2235-0977/a000029

Geschlechtsunterschiede werden bei kognitiven Leistungen kontrovers diskutiert. Dies gilt auch für die Kulturtechniken Lesen, Schreiben und Rechnen. Hier unterscheiden sich Mädchen und Jungen teilweise hinsichtlich ihrer schulischen Fertigkeiten, was das Thema der vorliegenden narrativen Überblicksarbeit darstellt. Im mathematischen Bereich erlernen Jungen im Grundschulalter das Stellenwertsystem der mehrstelligen Zahlen früher als Mädchen. Eventuell hängt dies mit besseren räumlichen Fähigkeiten der Jungen zusammen. Im Jugendalter finden sich Leistungsunterschiede zu Gunsten der Jungen bei komplexen Textaufgaben. Im internationalen Vergleich sind diesbezügliche Geschlechtsunterschiede in jenen Ländern höher, in denen eine geringere Gleichstellung zwischen Frauen und Männern herrscht. Das Lesen und Schreiben baut hingegen auf sprachlichen Vorläuferfertigkeiten auf. Hier gibt es Hinweise darauf, dass sich Mädchen schneller entwickeln. Unterschiede werden aber vorwiegend bei jungen Kindern gefunden und werden mit zunehmendem Alter geringer. Im höheren Schulalter sind im Bereich Lesen und Schreiben meist keine Unterschiede mehr zwischen den Geschlechtern nachweisbar. Für die Diagnosen einer Lese-Rechtschreibstörung (LRS) oder Rechenstörung (Dyskalkulie) gibt es hingegen deutliche Unterschiede. Bei Jungen wird die LRS deutlich häufiger erkannt. Im Gegensatz zu den meisten anderen Entwicklungsstörungen scheinen Mädchen tendenziell öfter von einer spezifischen Rechenstörung (Dyskalkulie) betroffen zu sein, wohingegen Jungen mindestens so häufig wie Mädchen Rechenprobleme in Kombination mit anderen kognitiven Störungen aufweisen. Sowohl bei der LRS als auch bei der Dyskalkulie scheinen Umweltfaktoren mit dafür verantwortlich, dass Jungen relativ gesehen häufiger identifiziert werden als Mädchen.


Gender Differences in Reading, Writing, and Calculation

Background: Cognitive gender differences and their origins are a hotly debated subject. Strict nature-nurture dichotomies concerning causal roles of gender differences are not useful for their understanding due to the reciprocal influences of environmental and biological factors (Halpern, 1997). Comparable to calculation, reading and writing are relatively new competences from an evolutionary perspective. Therefore, it is improbable that the evolution has selected a special mechanism for these capabilities. E. g. for reading and writing, it is more capable that learning a written language reorganises the cortical structures that are originally used for language and visual processing (Blomert & Willems, 2010).

Aims and methods: .In this narrative review, we wanted to summarize findings from meta-analyses and recent studies identifying specific areas which show gender differences in the fields of reading, writing, and mathematics. We also focused on underlying cognitive gender differences and their possible biological or environmental reasons. Furthermore, we reviewed prevalence rates of learning disorders and factors which might influence differential detection rates for boys and girls.

Results: In the mathematical domain, performance differences between boys and girls are usually not found for general aptitude or school achievement tests (Kimura, 2000). Only breaking down mathematics to more clearly defined faculties reveals a male advantage during early primary school years for the acquisition of multi-digit number understanding (Krinzinger, 2011) and from adolescence onwards for complex word problems (Kimura, 2000). Both may be related to better spatial skills in boys (Voyer et al., 1995), probably leading to an advantage in using spatial cognitive strategies (e. g., Carr et al., 2008; Van Garderen, 2006). On the other hand, it was recently shown that in international studies (PISA, TIMMS) gender differences in the mathematical domain were related to national gender gap indices mirroring economic, academic and other fields of (in)equality between women and men (Guiso et al., 2008). This demonstrates the influence of social factors on gender differences in mathematics.

Reading and writing are based on our language system. Some studies found that the language development of girls is faster (e. g. Bleses et al., 2008). Contrary to spatial skills, the effects sizes were small, but they were replicated in many languages. Differences between boys and girls are especially found in young children under the age of 3 years, but the dissimilarities disappear with higher school age. No differences could be detected at the age of six years (Bornstein & Hahn, 2004). Thus, boys seem to make up for their developmental delay. Comparable results were found for written language, wherein girls were better in first grade only in letter identification, and no differences were detected in fifth grade (Siegel & Smythe, 2005).

However, different sex ratios are described for developmental dyslexia and dyscalculia. There is a significant variation of the sex ratio dependent on the definition of the disorder (see Miles et al., 1998). Contrary to most other developmental disorders, girls seem to be more often affected by specific developmental dyscalculia (e.g., Von Aster et al., 2005), whereas boys with mathematical learning difficulties combined with other cognitive deficits are at least as often found as girls with the same problems. In general, boys are more often identified with dyslexia. For both disorders, environmental factors seem to be responsible for the higher identification rate in boys.

Discussion: .In general, we suggest that teachers and care-takers should be aware of academic fields in which gender differences might occur and their possible underlying factors. More specifically, attention should be drawn to the development of multi-digit number understanding in girls with poor spatial skills during early primary school years. Teachers should also pay specific attention to girls with problems in the acquisition phase of reading and writing, as their problems are more often overlooked compared to boys with the same difficulties. The reason for this is that in general, boys with additional other difficulties (e. g., attention, behaviour) are identified more often, which makes their problems easier detectable.

Overall, preventive training programs targeting cognitive precursors of academic skills in kindergarten (which are already quite successfully implemented in Germany regarding language functions) are desirable, as children with the lowest performance should profit the most – no matter if they are girls or boys.

Literatur

  • Altemeier, L. E. , Abbott, R. D. , Berninger, V. W. (2008). Executive functions for reading and writing in typical literacy development and dyslexia. Neuropsychology, Development and Cognition. Section A, 30 (5), 588 – 606. First citation in articleGoogle Scholar

  • Bachot, J. , Gevers, W. , Fias, W. , Roeyers, H. (2005). Number sense in children with visuospatial disabilities: orientation on the mental number line. Psychology Science, 47, 172 – 183. First citation in articleGoogle Scholar

  • Badian, N. A. (1983). Arithmetic and nonverbal learning. In Myklebust H.R. (Ed.), Progress in Learning Disabilities, Vol. 5. (pp. 235 – 264). New York: Grune and Stratton. First citation in articleGoogle Scholar

  • Badian, N. A. (1999). Persistent arithmetic, reading, or arithmetic and reading disability. Annals of Dyslexia, 49, 45 – 70. First citation in articleCrossrefGoogle Scholar

  • Baenninger, M. , Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20, 327 – 344. First citation in articleCrossrefGoogle Scholar

  • Barrouillet, P. , Camos, V. , Perruchet, P. , Seron, X. (2004). ADAPT: A developmental, asemantic and procedural model for transcoding from verbal to Arabic numerals. Psychological Review, 111, 368 – 394. First citation in articleCrossrefGoogle Scholar

  • Berglund, E. , Eriksson, M. , Westerlund, M. (2005). Communicative skills in relation to gender, birth order, childcare and socioeconomic status in 18-month-old children. Scandinavian Journal of Psychology, 46, 485 – 491. First citation in articleCrossrefGoogle Scholar

  • Bleses, D. , Vach, W. , Slott, M. , Wehberg, S. , Thomsen, P. , Madsen, T. O. et al. (2008). The Danish Communicative Developmental Inventories: validity and main developmental trends. Journal of child language, 35, 651 – 669. First citation in articleCrossrefGoogle Scholar

  • Blomert, L. , Willems, G. (2010). Is there a causal link from a phonological awareness deficit to reading failure in children at familial risk for dyslexia? Dyslexia, 16, 300 – 317. First citation in articleCrossrefGoogle Scholar

  • Bornstein, M. , Hahn, C. (2004). Specific and general language performance across early childhood: Stability and gender considerations. First Language, 24, 267 – 305. First citation in articleCrossrefGoogle Scholar

  • Carlson, C. , Tamm, L. , Gaub, M. (1997). Gender differences in children with ADHD, ODD, and co-occurring ADHD/ODD identified in a school population. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 1706 – 1714. First citation in articleCrossrefGoogle Scholar

  • Carr, M. , Hettinger Steiner, H. , Kyser, B. , Biddlecomb, B. (2008). A comparison of early emerging gender differences in mathematical competency. Learning and Individual Differences, 18, 61 – 75. First citation in articleCrossrefGoogle Scholar

  • Casey, M. B. , Nuttall, R. , Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test-scores across diverse samples. Developmental Psychology, 31, 697 – 705. First citation in articleCrossrefGoogle Scholar

  • Casey, M. B. , Nuttall, R. L. , Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33, 669 – 680. First citation in articleCrossrefGoogle Scholar

  • Casey, M. B. , Nuttall, R. N. , Pezaris, E. (1999). Evidence in support of a model that predicts how biological and environmental factors interact to influence spatial skills. Developmental Psychology, 35, 1237 – 1247. First citation in articleCrossrefGoogle Scholar

  • Casey, M. B. , Nuttall, R. N. , Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematics self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32, 28 – 57. First citation in articleCrossrefGoogle Scholar

  • Cirino, P. T. , Morris, M. K. , Morris, R. D. (2007). Semantic, executive, and visuospatial abilities in mathematical reasoning of referred college students. Assessment, 14, 94 – 104. First citation in articleCrossrefGoogle Scholar

  • Denissen, J. J. A. , Zarrett, N. R. , Eccles, J. S. (2007). I like to do it, I’m able, and I know I am: Longitudinal couplings between domain-specific achievement, self-concept, and interest. Child Development, 78, 430 – 447. First citation in articleCrossrefGoogle Scholar

  • Desoete, A. (2007). Students with mathematical disabilities in Belgium: from definition, classification and assessment to STICORDI devices. In T.E. Scruggs & M.A. Mastropieri (Eds.), Advances in Learning and Behavioral Disabilities, Vol. 20 (pp. 181 – 222). International Perspectives Amsterdam & Oxford: Elsevier Press. First citation in articleGoogle Scholar

  • Desoete, A. (2008). Do birth order, family size and gender affect arithmetic achievement in elementary school? Electronic Journal of Research in Educational Psychology, 6, 135 – 156. First citation in articleGoogle Scholar

  • Dowker, A. (2005). Early identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities, 38, 324 – 332. First citation in articleCrossrefGoogle Scholar

  • Eccles, J.S. , Jacobs, J.E. (1986). Social forces shape math attitudes and performance. Journal of Women in Culture and Society, 11, 367 – 380. First citation in articleCrossrefGoogle Scholar

  • Else-Quest, N. M. , Hyde, J. S. , Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136, 103 – 127. First citation in articleCrossrefGoogle Scholar

  • Feldman, H. M. , Dollaghan, C. A. , Campbell, T. F. , Kurs-Lasky, M. , Janosky, J. E. , Paradise, J. L. (2000). Measurement properties of the MacArthur communicative development inventories at ages one and two years. Child Development, 71, 310 – 322. First citation in articleCrossrefGoogle Scholar

  • Felson, R. B. , Trudeau, L. (1991). Gender differences in mathematics performance. Social Psychology Quarterly, 54, 113 – 126. First citation in articleCrossrefGoogle Scholar

  • Fennema, E. , Carpenter, T. P. , Jakobs, V. R. , Franke, M. L. , Lewi, L. W. (1998). A longitudinal study of gender differences in young children's mathematical thinking. Educational Researcher, 27, 16 – 31. First citation in articleCrossrefGoogle Scholar

  • Fenson, L. , Dale, P. S. , Reznick, J. S. , Bates, E. , Thal, D. J. , Pethick, S. J. (1994). Variability in early communicative development. Monographs of the Society for Research in Child Development, 59, 1 – 173 (discussion 174 – 85). First citation in articleCrossrefGoogle Scholar

  • Flannery, K. A. , Liederman, J. , Daly, L. , Schultz, J. (2000). Male prevalence for reading disability is found in a large sample of black and white children free from ascertainment bias. Journal of the International Neuropsychological Society: JINS, 6, 433 – 442. First citation in articleCrossrefGoogle Scholar

  • Gallagher, A. M. , De Lisi, R. , Holst, P. C. , Gillicuddy-De Lisi, A. V. , Morely, M. , Cahalan, C. (2000). Gender differences in advanced mathematical problem solving. Journal of Experimental Child Psychology, 75, 165 – 190. First citation in articleCrossrefGoogle Scholar

  • Galsworthy, M. , Dionne, G. , Dale, P. (2000). Sex differences in early verbal and nonverbal cognitive development. Developmental Science, 3, 206 – 215. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. (1995). Sexual selection and sex differences in spatial cognition. Learning and Individual Differences, 7, 289 – 301. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. , DeSoto, M. C. (2001). Sex differences in spatial abilities among adults from the United States and China. Evolution and Cognition, 7, 172 – 177. First citation in articleGoogle Scholar

  • Geary, D. C. , Saults, S. J. , Liu, F. , Hoard, M. K. (2000). Sex differences in spatial cognition, computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 77, 337 – 353. First citation in articleCrossrefGoogle Scholar

  • Gross-Tsur, V. , Manor, O. , Shalev, R. S. (1996). Developmental dyscalculia: prevalence and demographic features. Developmental Medicine and Child Neurology, 38, 25 – 33. First citation in articleCrossrefGoogle Scholar

  • Guiso, L. , Monte, F. , Sapienza, P. , Zingales, L. (2008). Culture, gender, and math. Science, 320, 1164 – 1165. First citation in articleCrossrefGoogle Scholar

  • Halpern, D. F. (1997). Sex differences in intelligence. Implications for education. American Psychologist, 52, 1091 – 1102. First citation in articleCrossrefGoogle Scholar

  • Halpern, D. F. (2000). Sex differences in cognitive abilities. Mahwahl: Lawrence Erlbaum Associates. First citation in articleCrossrefGoogle Scholar

  • Hampson, E. (1990). Estrogen-related variations in human spatial and articulatroy motor skills. Psychoneuroendocrinology, 15, 97 – 111. First citation in articleCrossrefGoogle Scholar

  • Hartje, W. (1987). The effects of spatial disorders on arithmetical skills. In G. Deloche & X. Seron (Eds.), Mathematical disabilities: A cognitive neuropsychological perspective (pp. 121 – 135).. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Hausmann, R. , Tyson, L. D. , Zahidi, S. (2006). The Global Gender Gap Report 2006, World Economic Forum. First citation in articleGoogle Scholar

  • Hein, J. (2000). The specific disorder of arithmetical skills. Dissertation thesis at Charité Medical School, Humboldt-University, Berlin. First citation in articleGoogle Scholar

  • Hyde, J. , Linn, M. (1988). Gender differences in verbal-ability – a meta-analysis. Psychological Bulletin, 104, 53 – 69. First citation in articleCrossrefGoogle Scholar

  • Hyde, J. S. , Fennema, E. , Lamon, S. J. (1990). Gender differences in mathematics performance – a metaanalysis. Psychological Bulletin, 107, 139 – 155. First citation in articleCrossrefGoogle Scholar

  • Hyde, J. S. , Mertz, J. E. (2009). Gender, culture, and mathematics performance. Proceedings of the National Academy of Sciences, 106, 8801 – 8807. First citation in articleGoogle Scholar

  • Hyde, J. S. , Linn, M. C. (2006). Gender similarities in mathematics and science. Science, 314, 599 – 600. First citation in articleCrossrefGoogle Scholar

  • IEA (1996). Third International Mathematics and Science Study (TIMSS III). TIMSS International Study Center Boston College, Chestnut Hill, MA, USA. First citation in articleGoogle Scholar

  • IEA (2007). Third International Mathematics and Science Study (TIMSS 2007). TIMSS International Study Center Boston College, Chestnut Hill, MA, USA. First citation in articleGoogle Scholar

  • Ise, E. , Engel, R. , Schulte-Körne, G. (2012). Was hilft bei der Lese-Rechtschreibstörung? Kindheit und Entwicklung, 21, 122 – 136. First citation in articleLinkGoogle Scholar

  • Johns, M. , Schmader, T. , Martens, A. (2005). Knowing is half the battle: Teaching stereotype threat as a means of improving women's math performance. Psychological Science, 16, 175 – 179. First citation in articleCrossrefGoogle Scholar

  • Johnson, E. S. (1984). Sex differences in problem solving. Journal of Educational Psychology, 76, 1359 – 1371. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. , Nuerk, H.-C. , Graf, M. , Krinzinger, H. , Delazer, M. , Willmes, K. (2009). TEDI-MATH. Test zur Erfassung numerisch-rechnerischer Fertigkeiten vom Kindergarten bis zur 3. Klasse. Bern: Huber. First citation in articleGoogle Scholar

  • Kenney-Benson, G. A. , Pomerantz, E. M. , Ryan, A. M. , Patrick, H. (2006). Sex differences in math performance: The role of children's approach to schoolwork. Developmental Psychology, 42, 11 – 26. First citation in articleCrossrefGoogle Scholar

  • Kerns, K. A. , Berenbaum, S. A. (1991). Sex differences in spatial ability in children. Behavior Genetics, 21, 383 – 396. First citation in articleCrossrefGoogle Scholar

  • Kimura, D. (2000). Sex and cognition. Cambridge, MA: MIT Press. First citation in articleGoogle Scholar

  • Kimura, D. , Hampson, E. (1994). Cognitive pattern in men and women is influenced by fluctuations in sex hormones. Current Directions in Psychological Science, 3, 57 – 61. First citation in articleCrossrefGoogle Scholar

  • Klauer, K. J. (1992). In Mathematik mehr leistungsschwache Mädchen, im Lesen und Rechtschreiben mehr leistungsschwache Jungen? Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 26, 48 – 65. First citation in articleGoogle Scholar

  • Klicpera, C. , Gasteiger-Klicpera, B. , Schabmann, A. (2007). Legasthenie. Modelle, Diagnose, Therapie und Förderung (p. 316). Utb. München: Ernst Reinhard GmbH & Co AG. First citation in articleGoogle Scholar

  • Kolb, B. , Wishaw, I. Q. (2003). Fundamentals of Human Neuropsychology (Vol. 5). New York: Worth Publishers. First citation in articleGoogle Scholar

  • Konrad, K. , Günther, T. (2007). Ursachen der Geschlechtsunterschiede in der Prävalenz der Aufmerksamkeitsdefizit-/ Hyperaktivitätsstörung. In S. Lautenbacher, O. Güntürkün, & M. Hausmann (Eds.), Gehirn und Geschlecht – Neurowissenschaft des kleinen Unterschieds zwischen Mann und Frau (pp. 223 – 248). Berlin: Springer. First citation in articleGoogle Scholar

  • Krinzinger, H. (2011). The role of multi-digit numbers in the development of numeracy. Saarbrücken, Südwestdeutscher Verlag für Hochschulschriften. First citation in articleGoogle Scholar

  • Krinzinger, H. , Kaufmann, L. (2006). Rechenangst und Rechenleistung. Sprache, Stimme und Gehör, 30, 160 – 164. First citation in articleCrossrefGoogle Scholar

  • Krinzinger, H. , Kaufmann, L. , Willmes, K. (2009). Math anxiety and math ability in early primary school years. Journal of Psychoeducational Assessment, 27, 206 – 225. First citation in articleCrossrefGoogle Scholar

  • Krinzinger, H. , Kaumann, L. , Dowker, A. , Thomas, G. , Graf, M. , Nuerk, H.-C. et al. (2007). Deutschsprachige Version des Fragebogens für Rechenangst (FRA) für 6- bis 9-jährige Kinder. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 35, 341 – 351. First citation in articleLinkGoogle Scholar

  • Krinzinger, H. , Kaufmann, L. , Grégoire, J. , Desoete, A. , Nuerk, H.-C. , Willmes, K. (2012). Gender differences in the development of numerical skills. International Journal of Gender, Science and Technology, im Druck. First citation in articleGoogle Scholar

  • Krinzinger, H. , Wood, G. , Willmes, K. (2012). What accounts for individual and gender differences in the multi-digit number processing of primary school children? Journal of Psychology, im Druck. First citation in articleGoogle Scholar

  • Levine, S. C. , Huttenlocher, J. , Taylor, A. , Langrock, A. (1999). Early sex differences in spatial skill. Development Psychology, 35, 940 – 949. First citation in articleCrossrefGoogle Scholar

  • Lewis, C. , Hitch, G. J. , Walker, P. (1994). The prevalence of specific arithmetic difficulties and specific reading difficulties in 9- to 10-year-old boys and girls. Journal of Child Psychology and Psychiatry, 35, 283 – 292. First citation in articleCrossrefGoogle Scholar

  • Liederman, J. , Kantrowitz, L. , Flannery, K. (2005). Male Vulnerability to Reading Disability Is Not Likely to Be a Myth: A Call for New Data. Journal of Learning Disabilities, 38, 109 – 129. First citation in articleCrossrefGoogle Scholar

  • Lindberg, S. M. , Hyde, J. S. , Petersen, J. L. , Linn, M. C. (2010). New trends in gender and mathematics performance: A meta-analysis. Psychological Bulletin, 136, 1123 – 1135. First citation in articleCrossrefGoogle Scholar

  • Linn, M. C. , Petersen, A. C. (1985) Emergence and characterization of sex differences in spatial ability: A meta- analysis. Child Development, 56, 1479 – 98. First citation in articleCrossrefGoogle Scholar

  • Liu, O. L. , Wilson, M. , Paek, I. (2008). A multidimensional Rasch analysis of gender differences in PISA mathematics. Journal of Applied Measurement, 1, 18 – 35. First citation in articleGoogle Scholar

  • Lubinski, D. , Benbow, C.P. (1992). Gender differences in abilities and preferences among the gifted: Implications for the math-science pipeline. Current Directions in Psychological Science, 1, 61 – 66. First citation in articleCrossrefGoogle Scholar

  • Miles, T. R. , Haslum, M. N. , Wheeler, T. (1998). Gender ratio in dyslexia. Annals of Dyslexia, 36, 103 – 117. First citation in articleCrossrefGoogle Scholar

  • Miller, G.F. (2000). The mating mind: How sexual choice shaped the evolution of human nature. New York: Doubleday. First citation in articleGoogle Scholar

  • Mills, C. J. , Abland, K. E. , Stumpf, H. (1993). Gender differences in academically talented young students' mathematical reasoning: Patterns across age and subskills. Journal of Educational Psychology, 85, 340 – 346. First citation in articleCrossrefGoogle Scholar

  • Moffat, S. D. , Hampson, E. (1996). A curvilinear relationship between testosterone and spatial cognition in humans: Possible influence of hand preference. Psychoneuroendocrinology, 21, 323 – 337. First citation in articleCrossrefGoogle Scholar

  • Moore, D. S. , Johnson, S. P. (2008). Mental rotation in human infants. Psychological Sciences, 19, 1063 – 1066. First citation in articleCrossrefGoogle Scholar

  • Newman, S. D. , Pruce, B. , Rusia, A. , Burns, T.Jr. (2010). The effect of strategy on problem solving: An fMRI study. The Journal of Problem Solving, 3, 1 – 26. First citation in articleCrossrefGoogle Scholar

  • OECD (2003). Programme for International Student Assessment (PISA), 2nd Assessment , OECD, Paris, France. First citation in articleGoogle Scholar

  • Osborne, J. W. (2001). Testing stereotype threat: Does anxiety explain race and sex differences in achievement? Contemporary Educational Psychology, 26, 291 – 310. First citation in articleCrossrefGoogle Scholar

  • Paganini-Hill, A. , Buckwalter, J. G. , Logan, C. G. , Henderson, V. W. (1993). Estrogen replacement and Alzheimer's disease in women. Society for Neuroscience Abstracts, 19, 1046. First citation in articleGoogle Scholar

  • Paglin, M. , Rufolo, A. M. (1990). Heterogeneous human capital, occupation choice, and male-female earning differences. Journal of Labor Economics, 8, 123 – 144. First citation in articleCrossrefGoogle Scholar

  • Penner, A. M , (2008). Gender differences in extreme mathematical achievement: An international perspective on biological, social, and societal factors. AJS, 114, S138 – S170. First citation in articleGoogle Scholar

  • Pennington, B. (2009). Diagnosing Learning Disorders. New York: The Guilford Press. First citation in articleGoogle Scholar

  • Pinker, S. (2007). The Language Instinct. Harper Perennial Modern Classics. First citation in articleGoogle Scholar

  • Quinn, P. C. , Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19, 1067 – 1070. First citation in articleCrossrefGoogle Scholar

  • Rivera-Batitz, F. L. (1992). Quantitative literacy and the likelihood of employment among young adults in the United States. The Journal of Human Resources, 22, 313 – 328. First citation in articleCrossrefGoogle Scholar

  • Robinson, N. M. , Abbott, R. D. , Berninger, V. W. , Busse, J. (1996). The structure of abilities in math-precocious young children: Gender similarities and differences. Journal of Educational Psychology, 88, 341 – 352. First citation in articleCrossrefGoogle Scholar

  • Rosselli, M. , Ardila, A. , Matute, E. , Inozemtseva, O. (2008). Gender differences and cognitive correlates of mathematical skills in school-aged children. Child Neuropsychology, 15, 216 – 231. First citation in articleCrossrefGoogle Scholar

  • Ruland, A. , Willmes, K. , Günther, T. (2012). Zusammenhang zwischen Aufmerksamkeitsdefiziten und Lese- Rechtschreibschwäche. Kindheit und Entwicklung, 21, 57 – 63. First citation in articleLinkGoogle Scholar

  • Shalev, R. S. (2004). Developmental dyscalculia. Journal of Child Neurology, 19, 765 – 771. First citation in articleCrossrefGoogle Scholar

  • Shalev, R. S. , Auerbach, J. , Manor, O. , Gross-Tsur, V. (2000). Developmental dyscalculia: prevalence and prognosis. European Child & Adolescent Psychiatry, 9, 58 – 64. First citation in articleCrossrefGoogle Scholar

  • Share, D. L. , Moffitt, T. E. , Silva, P. A. (1988). Factors associated with arithmetic-and-reading disability and specific arithmetic ability. Journal of Learning Disabilities, 21, 313 – 320. First citation in articleCrossrefGoogle Scholar

  • Shaywitz, S. E. , Shaywitz, B. A. , Fletcher, J. M. , Escobar, M. D. (1990). Prevalence of reading disability in boys and girls. Journal of the American Medical Association, 264, 998 – 1002. First citation in articleCrossrefGoogle Scholar

  • Siegel, L. S. , Smythe, I. S. (2005). Reflections on Research on Reading Disability with Special Attention to Gender Issues. Journal of Learning Disabilities, 38, 473 – 477. First citation in articleCrossrefGoogle Scholar

  • Smith, S. D. , Gilger, J. , Pennington, B. (2001). Dyslexia and other language/learning disorders. In D. L. Rimoin, J. M. Conner & R. E. Pyeritz (Eds.), Emery and Rimoin's Principles and Practice of medical genetics (pp. 2827 – 2865). New York: Churchill Livingstone. First citation in articleGoogle Scholar

  • Strang, J. D. , Rourke, B.P. (1985). Arithmetic disability subtypes: The neuropsychological significance of specific arithmetical impairment in childhood. In B. P. Rourke (Ed.), Neuropsychology of learning disabilities: Essentials of subtype analysis (pp. 167 – 183). New York: Guilford Press. First citation in articleGoogle Scholar

  • Su, R. , Rounds, J. , Armstrong, P. I. (2009). Men and things, women and people: A meta-analysis of sex differences in interests. Psychological Bulletin, 135, 859 – 884. First citation in articleCrossrefGoogle Scholar

  • Suchodoletz, von, W. (2004). Welche Chancen haben Kinder mit Entwicklungsstörungen? Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Tombaugh, T.N. , Kozak, J. , Rees, L. (1999). Normative Data Stratified by Age and Education for Two Measures of Verbal Fluency: FAS and Animal Naming. Archives of Clinical Neuropsychology, 14, 167-177. First citation in articleGoogle Scholar

  • Tzuriel, D. , Egozi, G. (2010). Gender differences in spatial ability of young children: The effects of training and processing strategies. Child Development, 81, 1417 – 1430. First citation in articleCrossrefGoogle Scholar

  • Ullrich, K. , Suchodoletz, W. (2011). Früherkennung von Sprachentwicklungsstörungen bei der U7 – diagnostische Validität der Elternfragebögen SBE-2-KT und ELFRA-2. Monatsschrift Kinderheilkunde, 159, 461 – 467. First citation in articleCrossrefGoogle Scholar

  • Van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39, 496 – 506. First citation in articleCrossrefGoogle Scholar

  • Van Goozen, S. H. M. , Cohen-Kettenis, P. T. , Gooren, L. J. G. , Frijda, N. H. , Van de Poll, N. E. (1995). Gender differences in behaviour: Activating effects of cross-sex hormones. Psychoneuroendocrinology, 20, 343 – 363. First citation in articleCrossrefGoogle Scholar

  • Von Aster, M. , Kucian, K. , Schweiter, M. , Martin, E. (2005). Rechenstörungen im Kindesalter. Monatsschrift Kinderheilkunde, 7, 614 – 622. First citation in articleCrossrefGoogle Scholar

  • Voyer, D. , Voyer, S. , Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250 – 270. First citation in articleCrossrefGoogle Scholar

  • Wallentin, W. (2009). Putative sex differences in verbal abilities and language cortex: A critical review. Brain and Language, 108, 175 – 183. First citation in articleCrossrefGoogle Scholar

  • Weinhold Zulauf, M. , Schweiter, M. , von Aster, M. (2003). Das Kindergartenalter: Sensitive Periode für die Entwicklung numerischer Fertigkeiten. Kindheit und Entwicklung, 12, 222 – 230. First citation in articleLinkGoogle Scholar

  • Weis, S. , Hausmann, M. , Stoffers, B. , Sturm, W. (2011). Dynamic changes in functional cerebral connectivity of spatial cognition during the menstrual cycle. Human Brain Mapping, 32, 1544 – 1556. First citation in articleCrossrefGoogle Scholar

  • Weiss, E. , Kemmler, G. , Deisenhammer, E. (2003). Sex differences in cognitive functions. Personality and Individual Differences, 35, 863 – 875. First citation in articleCrossrefGoogle Scholar

  • Willcutt, E. G. , Pennigton, B. F. , Olson, R. K. , Hulslander, J. (2005). Neuropsychological Analyses of Comorbidity Between Reading Disability and Attention Deficit Hyperactivity Disorder: In Search of the Common Deficit. Developmental Neuropsychology, 27, 35 – 78. First citation in articleCrossrefGoogle Scholar

  • Wright, R. , Thompson, W. L. , Ganis, G. , Newcombe, N. S. , Kosslyn, S.M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15, 763 – 771. First citation in articleCrossrefGoogle Scholar

  • Zuber, J. , Pixner, S. , Moeller, K. , Nuerk, H.-C. (2009). On the language specificity of basic number processing: Transcoding in a language with inversion and its relation to working memory capacity. Journal of Experimental Child Psychology, 102, 60 – 77. First citation in articleCrossrefGoogle Scholar