Skip to main content
Empirische Arbeit

Kinder mit Dyskalkulie fokussieren spontan weniger auf Anzahligkeit

Published Online:https://doi.org/10.1024/2235-0977/a000024

Zusammenfassung: Wie stark wir spontan auf Anzahligkeit in unserer Umgebung achten wird als SFON (Spontaneous Focussing On Numerosity) bezeichnet. Frühere Studien haben gezeigt, dass ein Kind, das stärkere SFON-Tendenz zeigt, bessere Zählfertigkeiten und mathematische Leistungen erbringt. SFON scheint sich stabil und kontinuierlich zu entwickeln und kann als Prädiktor für die zukünftige Rechenleistung genutzt werden. Es wird dementsprechend als ein stabiles und sensibles Maß für die numerische Entwicklung beschrieben. Bei Kindern mit Dyskalkulie scheint die Entwicklung der Zahlenverarbeitung und des Rechnens spezifisch gestört. Das Ziel der vorliegenden Studie ist die Untersuchung der SFON-Tendenz bei Kindern mit einer entwicklungsbedingten Dyskalkulie. Wir haben SFON bei 76 Kindern zwischen 7 und 11 Jahren getestet, 38 Kinder mit und 38 ohne Dyskalkulie. Die beiden Gruppen zeigten vergleichbare allgemeine kognitive Fähigkeiten, unterschieden sich aber spezifisch in den mathematischen Leistungen. Die Ergebnisse zeigen eine signifikant schwächere SFON-Tendenz bei Kindern mit Dyskalkulie, das heißt, Kinder mit Dyskalkulie fokussieren im Vergleich zu Kontrollkindern spontan weniger häufig auf Anzahligkeit. Zudem korreliert SFON positiv mit der Zahlenverarbeitungs- und Rechenleistung. Das heißt, Kinder mit schlechteren mathematischen Fertigkeiten achten spontan weniger auf numerische Aspekte. Die Ergebnisse zeigen, dass eine verminderte SFON-Tendenz ein Verhaltensmerkmal für Entwicklungsdyskalkulie zu sein scheint. Dies kann sowohl Ursache als auch Folge der Störung von Zähl- und Rechenfertigkeiten sein. Es empfiehlt sich daher, SFON bei Kindern mit einem Dyskalkulierisiko zu erfassen sowie Förderung und Lernumgebung in Hinblick auf Anzahlfokussierung anzureichern.


Extended abstract

Children with Developmental Dyscalculia Focus Spontaneously Less on Numerosities

Children differ in how much they spontaneously pay attention to quantitative aspects in their surroundings. The tendency to Spontaneously Focus On Numerosity (SFON) can be quantified and provides a stable and sensitive measure of using exact enumeration (Hannula & Lehtinen, 2005; Hannula, Lepola & Lehtinen, 2010; Hannula, Mattinen & Lehtinen, 2005; Hannula, Räsänen & Lehtinen, 2007). Moreover, SFON-behaviour is positively related to counting and mathematical abilities (Hannula & Lehtinen, 2005; Hannula et al., 2007). Children who focus more on numbers show better performance in numerical tasks. In addition, the amount of SFON seems to develop consistently over time. Therefore, SFON can be used as a predictor of future numerical development (Hannula et al., 2010).

In children with developmental dyscalculia (DD), the acquisition of numerical abilities is specifically impaired. These children have problems in basic numerical skills, like counting or the fast and accurate enumeration of small numerosities (subitizing), the understanding of cardinal and ordinal principles, as well as in higher mathematical skills, as arithmetic [detailed information about DD can be found e. g. in (Landerl & Kaufmann 2008; Vogel & Ansari 2012; von Aster & Lorenz 2005)]. About 3 – 6 % of school-children are affected by this learning disability (Reigosa-Crespo et al., 2012; Shalev, Auerbach, Manor & Gross-Tsur, 2000; Shalev & von Aster, 2008; von Aster, Schweiter & Weinhold Zulauf, 2007). In the present study, we have addressed the question whether children with DD differ in their spontaneous tendency to pay attention to exact numerosities.

Besides of SFON, a variety of cognitive skills were examined in 76 children between 7 and 11 years of age; half of them were diagnosed with DD. Children with DD and control children were carefully matched for general cognitive abilities, but differed significantly in number-related measures.

Results indicated significantly weaker SFON tendency in children with DD, which means that these children pay less attention on the aspect of exact numerosity compared to typically achieving children. Furthermore, the amount of SFON was positively related to number processing. Children who focus spontaneously less on exact quantities performed lower in numerical tasks.

Our results indicate that a low SFON tendency depicts a behavioural characteristic of dyscalculia. Why SFON is diminished in DD can have several reasons. Children with DD might neglect or avoid numerical contents in their learning environment, e. g. as a result of receptive deficits, lack of opportunity or appropriate alimentation or as a result of negative learning experiences. As a consequence, they acquire less practice and expertise in mathematical activities which in turn could have negative effects on the development of automated SFON processes. On the other hand, Hannula et al. (2010) speculate that an initial reduction in SFON behaviour during early learning phases might be associated with children’s lower tendency to focus on mathematical aspects. Accordingly, a diminished SFON tendency in children with DD could additionally increase their numerical learning difficulties.

The amount of focusing on quantities is related to counting skills (Hannula & Lehtinen, 2005; Hannula et al., 2007). Children with DD dwell longer on less experienced counting strategies and show difficulties in subitizing which is connected to lower math performance (Clements & Sarama, 2009; Frank 1989; Geary, Hoard & Hamson, 1999; Jordan, David Kaplan, Locuniak & Ramineni, 2007; Landerl, Bevan & Butterworth, 2004; Schleifer & Landerl, 2011). Such immature counting skills might lead to a reduced SFON tendency in children with DD. However, it might also be possible that deficits in SFON processes are accompanied by problems in the development of higher counting strategies.

In summary, the present study showed for the first time that children with DD focus their attention less on quantitative aspects in their natural surrounding. Whether the reduced SFON tendency influences the development of counting and calculation abilities in a negative way or whether a deficit in basic number processing due to dyscalculia results in a diminished SFON amount is open. However, lower SFON behaviour delineates an additional characteristic of developmental dyscalculia and earns special interest since SFON is a stable and sensitive measure of further learning success. SFON tendency might be accounted as an early predictor of dyscalculia risk on the grounds that it can already be assessed in 3.5 year old children. Finally, the encouragement to focus on numerical aspects by adequate learning environments can enhance SFON tendency which positively affects the development of mathematical skills in children (Hannula et al., 2005). Hence, support in the development of SFON behaviour seems also advisable for children with dyscalculia.

Literatur

  • Assel, A. , Landry, S. H. , Swank, P. , Smith, K. E. , Steelman, L. M. (2003). Precursors to mathematical skills: Examining the roles of visual-spatial skills, executive processes, and parenting factors. Applied Developmental Science, 7, 27– 38. First citation in articleCrossrefGoogle Scholar

  • Bachot, J. , Gevers, W. , Fias, W. , Roeyers, H. (2005). Number sense in children with visuospatial disabilities: orientation of the mental number line. Psychology Science, 47, 172– 183. First citation in articleGoogle Scholar

  • Beblo, T. , Macek, C. , Brinkers, I. , Hartje, W. , Klaver, P. (2004). A new approach in clinical neuropsychology to the assessment of spatial working memory: the block suppression test. Journal of clinical and experimental neuropsychology, 26, 105– 114. First citation in articleCrossrefGoogle Scholar

  • Clements, D. H. , Sarama, J. (2009). Learning and teaching early math: the learning trajectories approach. New York: Taylor & Francis. First citation in articleCrossrefGoogle Scholar

  • Cohen, J. (1992). A power primer. Psychol Bull, 112, 155– 159. First citation in articleCrossrefGoogle Scholar

  • Corsi, P. M. (1972). Human memory and the temporal region of the brain. Dissertation Abstracts International, 34, 891. First citation in articleGoogle Scholar

  • Esser, G. , Wyschkon, A. , Ballaschk, K. (2008). BUEGA: Basisdiagnostik Umschriebener Entwicklungsstörungen im Grundschulalter. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Frank, A. R. (1989). Counting Skills--A Foundation for Early Mathematics. Arithmetic Teacher, 37, 14– 17. First citation in articleGoogle Scholar

  • Geary, D. (1993). Mathematical disabilities: cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345– 362. First citation in articleCrossrefGoogle Scholar

  • Geary, D. (2010). Mathematical disabilities: Reflections on cognitive, neuropsychological, and genetic components. Learning and Individual Differences, 20, 130– 133. First citation in articleCrossrefGoogle Scholar

  • Geary, D. , Hoard, M. K. , Hamson, C. O. (1999). Numerical and arithmetical cognition: patterns of functions and deficits in children at risk for a mathematical disability. Journal of Experimental Child Psychology, 74, 213: 239. First citation in articleGoogle Scholar

  • Gelman, R. , Gallistel, C. (1978). The child's understanding of number. Cambridge: Mass: Harvard University Press First citation in articleGoogle Scholar

  • Haffner, J. , Baro, K. , Parzer, P. , Resch, F. (2005). Heidelberger Rechentest: Erfassung mathematischer Basiskompetenzen im Grundschulalter. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Hannula, M. M. , Lehtinen, E. (2001). Spontaneous tendency to focus on numerosities in the development of cardinality. In M. Panhuizen-Van Heuvel (Ed.), Proceedings of 25th conference of the international group for the psychology of mathematics education (Vol. 3, pp. 113 – 120). Amersfoort, The Netherlands: Drukkerij Wilco. First citation in articleGoogle Scholar

  • Hannula, M. M. , Lehtinen, E. (2003). Spontaneous focusing on numerosity in the development of early mathematical skills. Paper presented at the EARLI, 26th- 30th August, 2003 First citation in articleGoogle Scholar

  • Hannula, M. M. , Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15, 237– 256. First citation in articleCrossrefGoogle Scholar

  • Hannula, M. M. , Mattinen, A. , Lehtinen, E. (2005). Does social interaction influence 3-year-old children’s tendency to focus on numerosity? A quasi-experimental study in day-care. In L. Verschaffel, E. De Corte, G. Kanselaar & M. Valcke (Eds.), Powerful learning environments for promoting deep conceptual and strategic learning, (Vol. 41, pp. 63 – 80). Leuven: University Press. First citation in articleGoogle Scholar

  • Hannula, M. M. , Räsänen, P., Lehtinen, E. (2007). Development of counting skills: Role of spontaneous focusing on numerosity and subitizing-based enumeration. Mathematical Thinking and Learning, 9, 51– 57. First citation in articleCrossrefGoogle Scholar

  • Hannula, M. M. , Lepola, J. , Lehtinen, E. (2010). Sontanoeus focusing on numerosity as domain-specific predictor of arithmetical skills. Journal of Experimental Child Psychology, 107, 394– 406. First citation in articleCrossrefGoogle Scholar

  • Jordan, N. C. , Kaplan, D. , Locuniak, M. N. , Ramineni, C. (2007). Predicting First-Grade Math Achievement from Developmental Number Sense Trajectories. Learning Disabilities Research & Practice, 22, 36– 46. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. , Vogel, S. , Starke, M. , Kremser, C. , Schocke, M. , Wood, G. (2009). Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to non­symbolic magnitudes. Behavioral and Brain Functions, 5, 35. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Bevan, A. , Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8 – 9-year-old students. Cognition, 93, 99– 125. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Kaufmann, L. (2008). Dyskalkulie: Modelle, Diagnostik, Intervention. München: Ernst Reinhardt. First citation in articleGoogle Scholar

  • Mazzocco, M. M. , Thompson, R. E. (2005). Kindergarten Predictors of Math Learning Disability. Learn Disabil Res Pract, 20, 142– 155. First citation in articleCrossrefGoogle Scholar

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97– 113. First citation in articleCrossrefGoogle Scholar

  • Osmon, D. C. , Smerz, J. M. , Braun, M. M. , Plambeck, E. (2006). Processing abilities associated with math skills in adult learning disability. Journal of Clinical and Experimental Neuropsychology 28 (1), 84– 95. First citation in articleCrossrefGoogle Scholar

  • Petermann, F. , Petermann, U. (2007). Hamburg-Wechsler-Intelligenztest für Kinder IV Bern: Huber. First citation in articleGoogle Scholar

  • Reigosa-Crespo, V. , Valdes-Sosa, M. , Butterworth, B. , Estevez, N. , Rodriguez, M. , Santos, E. et al. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48, 123– 135. First citation in articleCrossrefGoogle Scholar

  • Rotzer, S. , Loenneker, T. , Kucian, K. , Martin, E. , Klaver, P. , von Aster, M. (2009). Dysfunctional neural network of spatial working memory contributes to developmental dyscalculia. Neuropsychologia, 47, 2859– 2865. First citation in articleCrossrefGoogle Scholar

  • Rourke, B. P. , Finlayson, M. A. (1978). Neuropsychological significance of variations in patterns of academic performance: verbal and visual-spatial abilities. Journal of Abnormal Child Psychology, 6, 121– 133. First citation in articleCrossrefGoogle Scholar

  • Rubinsten, O. , Henik, A. (2009). Developmental dyscalculia: heterogeneity might not mean different mechanisms. Trends in cognitive sciences, 13, 92– 99. First citation in articleCrossrefGoogle Scholar

  • Schleifer, P. , Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14, 280– 291. First citation in articleCrossrefGoogle Scholar

  • Shalev, R. S. , Auerbach, J. , Manor, O. , Gross-Tsur, V. (2000). Developmental dyscalculia: prevalence and prognosis. European Child and Adolescent Psychiatry, 9 Suppl 2, II 58– 64. First citation in articleCrossrefGoogle Scholar

  • Shalev, R. S. , Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric Neurology, 24, 337– 342. First citation in articleCrossrefGoogle Scholar

  • Shalev, R. S. , von Aster, M. (2008). Identification, classification, and prevalence of developmental dyscalculia. Encyclopedia of Language and Literacy Development, 1– 9. First citation in articleGoogle Scholar

  • Soltész, F. , Szucs, D. , Dékány, J. , Márkus, A. , Csépe, V. (2007). A combined event-related potential and neuropsychological investigation of developmental dyscalculia. Neuroscience Letters, 417, 181– 186. First citation in articleCrossrefGoogle Scholar

  • Vogel, S. , Ansari, D. (2012). Neurokognitive Grundlagen der typischen und atypischen Zahlenverarbeitung. Lernen und Lernstörungen, 1, 135– 149. First citation in articleLinkGoogle Scholar

  • von Aster, M. , Lorenz, J. (2005). Rechenstörungen bei Kindern. Neurowissenschaft, Psychologie, Pädagogik. Göttingen: Vandenhoeck & Ruprecht. First citation in articleGoogle Scholar

  • von Aster, M. , Schweiter, M. , Weinhold Zulauf, M. (2007). Rechenstörungen bei Kindern: Vorläufer, Prävalenz und psychische Symptome. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 39, 85– 96. First citation in articleLinkGoogle Scholar

  • von Aster, M. , Weinhold Zulauf, M. , Horn, R. (2006). ZAREKI-R (Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern), revidierte Version. Frankfurt: Harcourt Test Services. First citation in articleGoogle Scholar