Skip to main content
Empirische Arbeit

Förderung von Kindern mit isolierter Rechenschwäche und kombinierter Rechen- und Leseschwäche: Evaluation eines numerischen Förderprogramms für Grundschüler

Published Online:https://doi.org/10.1024/2235-0977/a000033

Defizite in den Bereichen der basisnumerischen Verarbeitung, der Zählfertigkeiten, beim Transkodieren, des numerischen Faktenwissens sowie beim Ausführen arithmetischer Prozeduren gehören zu den typischen Symptomen einer entwicklungsbedingten Rechenschwäche im Grundschulalter. Während für den englischen Sprachraum einige umfassende Förderprogramme evaluiert wurden, liegen für den deutschen Sprachraum bislang kaum wissenschaftlich evaluierte Interventionsprogramme vor, die gezielt auf diese Defizite eingehen. Mit der vorliegenden Studie wird die Wirksamkeit eines modular aufgebauten, neuropsychologisch orientierten numerischen Förderprogramms evaluiert. Dieses Programm fokussiert den Aufbau basisnumerischer und konzeptueller Kompetenzen, wobei prozedurales und arithmetisches Faktenwissen integriert werden. Im Rahmen eines Experimental-Kontrollgruppen-Designs wurden fünf Gruppen von Zweit- und Drittklässlern (geförderte rechenschwache Kinder ohne und mit Leseschwäche, eine Vergleichsgruppe rechenschwacher Kinder mit Leseschwäche, durchschnittliche Rechner ohne und mit Leseschwäche) zu zwei Messzeitpunkten (vor/nach der Intervention) hinsichtlich ihrer arithmetischen Kompetenzen untersucht. Während sich die Kinder der Interventionsgruppen bedeutsam verbessern konnten, waren bei den Kindern der Vergleichsgruppen kaum Leistungszuwächse festzustellen. Der Leistungszuwachs der Kinder mit isolierter Rechenschwäche war deutlich größer als der der Kinder mit einer zusätzlichen Leseschwäche. Die Ergebnisse dieser Studie belegen, dass das eingesetzte Programm zur Verbesserung der arithmetischen Fertigkeiten rechenschwacher Kinder spezifisch wirksam ist. Sie veranschaulichen zudem den Bedarf an Interventionsstudien, die die Wirksamkeit unterschiedlicher Förderansätze für rechenschwache Kinder ohne und mit komorbider Leseschwäche vergleichen.


Remediation for Children with Mathematical Difficulties: Evaluation of a Numerical Intervention Program for Primary School Children

Background: Primary-school children who suffer from mathematical difficulties (MD) typically show deficits in various number-related domains such as basic numerical processing, counting, transcoding, numerical fact and procedural knowledge. Despite the high prevalence rate of MD in the general population, no empirically evaluated intervention programs that focus on the whole range of potential deficits have been published in German-speaking countries up to date. However, a pilot-study on third-graders with MD (Kaufmann et al., 2003) suggested that a German adaption of the Numeracy-Recovery Program (Dowker, 2001, 2007) may present a promising approach for the remediation of mathematical difficulties. This intervention program for primary schoolers is based on neuropsychological models of number processing and arithmetic (e. g. triple-code model; Dehaene, 1992). In the context of this intervention program, children's understanding and execution of numerical operations are trained by a concurrent tutoring of both basic numerical and conceptual knowledge. Basic numerical knowledge, an important precursor for the acquisition of formal arithmetic operations, is defined as the ability to process and compare numerical magnitudes. Conceptual knowledge, on the other hand, describes an understanding of arithmetic operations and procedures. It enables the child to carry out arithmetic procedures and facilitates the storage of arithmetical facts (Baroody, 2003, 2006).

An investigation into mathematical difficulties and strategies for remediation is, however, complicated by the observation that MD is a rather heterogeneous phenomenon. In fact, there are at least two forms of MD that should be differentiated: an isolated form of MD and a combined form which is accompanied by additional reading problems. A number of studies have demonstrated that these two subgroups differ from each other with respect to defining deficits and residual capacities (e. g. Hanich et al., 2001; Jordan et al., 2003; Jordan et al., 2002). Unfortunately, studies comparing the efficacy of remediation programs for these two subgroups of MD are rare (but see Powell et al., 2009).

Aims: The current study examines the efficacy of an numerical intervention program originally implemented by Handl and Kaufmann (Kaufmann, Delazer et al., 2005; Kaufmann et al., 2003). First of all, we wanted to determine to what extent second and third graders with MD can improve their arithmetic performance with the aid of this intervention program. Secondly, we were interested in finding out whether children with additional reading deficits would be able to benefit from the intervention to the same extent as children with MD only.

Methods: We investigated the efficacy of the intervention program by comparing the development of 46 children with MD with 18 typically achieving control children. Based on their performances in a reading test, these two groups were further subdivided into children with MD only (MD; N = 24), children with MD and additional reading deficits (MD/RD; N = 22), controls without (CC; N = 9) and with reading deficits (RD; N = 9). One part of MD/RD was assigned to a MD control group (CC/MD/RD; N = 5), which was treated with a reading intervention program (Engl, et al., 2009) first and only after the current study was intruduced to the numerical intervention program. The MD group and the remaining MD/RD children were the experimental groups that underwent the numerical training. Prior to remediation onset, the three groups of children with MD were comparable with respect to their arithmetic achievement levels. All groups were matched for age, intelligence and working memory performance.

To assess changes in children's arithmetic performance levels, all children were administered a curricular oriented arithmetic test (Haffner et al., 2005) twice. MD children were further assessed using a neuropsychological dyscalculia test battery (Kaufmann et al., 2008) prior to the onset and after the completion the intervention program.

The numerical intervention program is composed of nine modules focusing on basic numerical and conceptual knowledge and is complemented by procedural and fact knowledge tutoring. Even though the different training modules are arranged in a hierarchical sequence, in practice, they are applied with a certain amount of overlap. The program consists of the following modules:

(1) magnitude representations and relations,

(2) counting knowledge,

(3) written arithmetical symbols and transcoding up to 20,

(4) numerical facts that sum up to 10 (e. g., 9 + 1, 8 + 2, 7 + 3, …),

(5) addition up to 10 and decomposition of numbers,

(6) subtraction and inversion problems,

(7) base-10 system and transcoding up to 100, counting in steps, multistep calculations,

(8) multiplication and repeated addition,

(9) division and inversion problems.

Mixed-age groups with 2 to 6 children were tutored once per week in block sessions similar in length to two regular school lessons (1.5 hours). To ensure comparable settings for all groups, the procedures and exercises were standardized. Intensity and duration of single modules varied depending on the severity of deficits children of the respective groups suffered from (on average 37 sessions in total).

Results: Comparisons of children's mathematical performance before and after the intervention revealed a significant interaction effect of time (pre, post) and group (MD, MD/RD, CC, RD, CC/MD/RD). While children with MD who took part in the program were able to improve their arithmetic performance significantly (ps ≤ .013), children of the waiting and control groups did not show comparable performance changes (ps ≥ .249). These findings demonstrate that the numerical intervention program was effective for both experimental groups. At the same time, MD and MD/RD did respond differently to the intervention, i. e. the improvement in performance was larger in children with MD (η p2 = .561) compared to MD/RD (η p2= .328). This group difference can be explained mainly by differential performance changes in tasks that assess addition, subtraction and the counting of objects. These tasks specifically load on fact and procedural knowledge. On the other hand, performance increases in tasks loading on conceptual knowledge and visual-spatial abilities were comparable for both experimental groups.

Discussion: The findings of the present study demonstrate that the adopted numerical intervention program (Kaufmann et al., 2003) is effective and, thus, appropriate for the remediation of MD in primary school children. Basic numerical, conceptual, procedural and arithmetic fact knowledge did improve significantly in the course of the intervention period. The overall effects were remarkable considering the fact the intervention program was extensive and implemented in a group setting, i. e. factors which typically result in rather small effect sizes (Baker et al., 2002; Kroesbergen & van Luit, 2003).

Another important result was that MD outperformed MD/RD with respect to performance gains during the intervention. One possible explanation for the specific disadvantage of MD/RD could be their difficulties in establishing fact and procedural knowledge (Geary & Hoard, 2001; Powell et al., 2009). Consequently, future studies should focus on the comparison of intervention strategies for children with isolated mathematical difficulties and children who suffer from additional reading problems. Furthermore, intensities and contents of the program should be manipulated in order to filter out the most effective components of this rather complex intervention program.

Literatur

  • Aebli, H. (1961). Grundformen des Lehrens. Ein Beitrag zur psychologischen Grundlegung der Unterrichtsmethode. Stuttgart: Klett. First citation in articleGoogle Scholar

  • Ardila, A. , Rosselli, M. (2002). Acalculia and dyscalculia. Neuropsychology Review , 12, 179 – 231. First citation in articleCrossrefGoogle Scholar

  • Aunola, K. , Leskinen, E. , Lerkkanen, M.-K. , Nurmi, J.-E. (2004). Developmental dynamics of math performance from preschool to grade 2. Journal of Educational Psychology , 96, 699 – 713. First citation in articleCrossrefGoogle Scholar

  • Baker, S. , Gersten, R. , Lee, D. (2002). A synthesis of empirical research on teaching mathematics to low-achieving students. The Elementary School Journal , 103, 51 – 73. First citation in articleGoogle Scholar

  • Baroody, A. J. (2003). The development of adaptive expertise and flexibility, The integration of conceptual and procedural knowledge. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills, Constructing adaptive expertise (pp. 1 – 34). Mahwah, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Baroody, A. J. (2006). Why children have difficulties mastering the basic number combinations and how to help them. Teaching Children Mathematics , 13, 22 – 31. First citation in articleGoogle Scholar

  • Bull, R. , Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability. Shifting, inhibition, and working memory. Developmental Neuropsychology , 19, 273 – 293. First citation in articleCrossrefGoogle Scholar

  • Butterworth, B. (2005a). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry , 46, 3 – 18. First citation in articleCrossrefGoogle Scholar

  • Butterworth, B. (2005b). Developmental dyscalculia. In J. Campbell (Ed.), The handbook of mathematical cognition. New York: Psychology Press. First citation in articleGoogle Scholar

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition , 44, 1 – 42. First citation in articleCrossrefGoogle Scholar

  • Dehaene, S. (1997). The number sense. New York: Oxford University Press. First citation in articleGoogle Scholar

  • Dehaene, S. , Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition , 1, 83 – 120. First citation in articleGoogle Scholar

  • Deutsche Gesellschaft für Kinder- und Jugendpsychiatrie und Psychotherapie (2007). Leitlinien zur Diagnostik und Therapie von psychischen Störungen im Säuglings-, Kindes- und Jugendalter , 3. überarbeitete Auflage. Köln: Deutscher Ärzte Verlag. First citation in articleGoogle Scholar

  • Dilling, H. , Mombour, W. , Schmidt, M. H. (2008). Internationale Klassifikation psychischer Störungen. ICD-10 Kapitel V(F). Bern: Huber. First citation in articleGoogle Scholar

  • Dowker, A. (2001). Numeracy recovery: A pilot scheme for early intervention with young children with numeracy difficulties. Support for Learning , 16, 6 – 10. First citation in articleCrossrefGoogle Scholar

  • Dowker, A. (2004). What works for children with mathematical difficulties? Research Report RR554. University of Oxford: Department for Education and Skills. First citation in articleGoogle Scholar

  • Dowker, A. (2005). Early identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities , 38, 324 – 332. First citation in articleCrossrefGoogle Scholar

  • Dowker, A. (2007). What can intervention tell us about arithmetical difficulties? Educational and Child Psychology , 24, 64 – 75. First citation in articleGoogle Scholar

  • Eid, M. , Gollwitzer, M. , Schmitt, M. (2011). Statistik und Forschungsmethoden. Weinheim, Basel: Beltz. First citation in articleGoogle Scholar

  • Engl, V. , Thaler, V. , Heine, A. , Jacobs, A. M. (2009). Guckos Rechtschreib- und Lesetraining. Frei verfügbare Computersoftware unter www.fu-berlin.de/guckomobil. First citation in articleGoogle Scholar

  • Fritz, A. , Ricken, G. , Gerlach, M. (2007). Kalkulie: Diagnose- und Trainingsprogramm für rechenschwache Kinder. Handreichung zur Durchführung der Diagnose. Berlin: Cornelsen. First citation in articleGoogle Scholar

  • Fuchs, L. S. , Fuchs, D. , Compton, D. L. (in press). Intervention effects for students with comorbid forms of learning disability: Understanding the needs of nonresponders. Journal of Learning Disabilities. First citation in articleGoogle Scholar

  • Gaidoschik, M. (2012). Rechenschwäche verstehen – Kinder gezielt fördern: Ein Leitfaden für die Unterrichtspraxis , 5. Auflage. Hamburg: Persen. First citation in articleGoogle Scholar

  • Games, P. A. , Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal N's and/or variances: a Monte Carlo study. Journal of Educational and Behavioral Statistics , 1, 113 – 125. First citation in articleCrossrefGoogle Scholar

  • Gaupp, N. , Zoelch, C. , Schumann-Hengsteler, R. (2004). Defizite numerischer Basiskompetenzen bei rechenschwachen Kindern der 3. und 4. Klassenstufe. German Journal of Educational Psychology , 18, 31 – 42. First citation in articleAbstractGoogle Scholar

  • Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin , 114, 345 – 362. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. , Bow-Thomas, C. C. , Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology , 54, 372 – 391. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. , Hamson, C. O. , Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology , 77, 236 – 263. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. , Hoard, M. K. (2001). Numerical and arithmetical deficits in learning-disabled children: Relation to dyscalculia and dyslexia. Aphasiology , 15, 635 – 647. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. , Hoard, M. K. , Byrd-Craven, J. , DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disabilities. Journal of Experimental Child Psychology , 88, 121 – 151. First citation in articleCrossrefGoogle Scholar

  • Geary, D. C. , Hoard, M. K. , Hamson, C. O. (1999). Numerical and arithmetical cognition: Patterns of functions and deficits in children at risk for a mathematical disability. Journal of Experimental Child Psychology , 74, 213 – 239. First citation in articleCrossrefGoogle Scholar

  • Gersten, R. , Jordan, N. C. , Flojo, J. R. (2005). Early identification and interventions for students with mathematics difficulties. Journal of Learning Disabilities , 38, 293 – 304. First citation in articleCrossrefGoogle Scholar

  • Grissemann, H. , Weber, A. (1982). Spezielle Rechenstörungen, Ursachen und Therapie: psychologische und kinderpsychiatrische Grundlagen der pädagogisch-therapeutischen Intervention bei Kindern mit Dyskalkulie. Bern: Huber. First citation in articleGoogle Scholar

  • Grissemann, H. , Weber, A. (1993). Praxis und Therapie der Dyskalkulie. Bern: Huber. First citation in articleGoogle Scholar

  • Gross-Tsur, V. , Manor, O. , Shalev, R. S. (1996). Developmental dyscalculia: Prevalence and demographic features. Developmental Medicine and Child Neurology , 38, 25 – 33. First citation in articleCrossrefGoogle Scholar

  • Haffner, J. , Baro, K. , Parzer, P. , Resch, F. (2005). Der Heidelberger Rechentest, Erfassung mathematischer Basiskompetenzen im Grundschulalter (HRT 1 – 4). Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Handl, P. (2009). Numerische Frühförderung. Der Einfluss numerischer und räumlicher Förderprogramme auf die Zahlbegriffsentwicklung von Kindern im Vorschulalter. Saarbrücken: VDM Verlag Dr. Müller. First citation in articleGoogle Scholar

  • Hanich, L. B. , Jordan, N. C. , Kaplan, D. , Dick, J. (2001). Performance across different areas of mathematical cognition in children with learning difficulties. Journal of Educational Psychology , 93, 615 – 626. First citation in articleCrossrefGoogle Scholar

  • Hasselhorn, M. , Schuchardt, K. (2006). Lernstörungen – eine kritische Skizze zur Epidemiologie. Kindheit und Entwicklung , 15, 208 – 215. First citation in articleLinkGoogle Scholar

  • Heine, A. , Engl, V. , Thaler, V. , Fussenegger, B. , Jacobs, A. M. (2012). Neuropsychologie von Entwicklungsstörungen schulischer Fertigkeiten. Göttingen: Hogrefe. First citation in articleGoogle Scholar

  • Heller, K. , Geisler, H. J. (1983). Kognitiver Fähigkeitstest – Grundschulform (KFT 1 – 3). Weinheim: Beltz. First citation in articleGoogle Scholar

  • Ise, E. , Dolle, K. , Pixner, S. , Schulte-Körne, G. (2012). Effektive Förderung rechenschwacher Kinder. Eine Metaanalyse. Kindheit und Entwicklung , 21, 181 – 192. First citation in articleLinkGoogle Scholar

  • Jaccard, J. , Becker, M. A. , Wood, G. (1984). Pairwise multiple comparison procedures: a review. Psychological Bulletin , 96, 589 – 596. First citation in articleCrossrefGoogle Scholar

  • Jordan, N. C. , Hanich, L. B. , Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with co-morbid mathematics and reading difficulties. Child Development , 74, 834 – 850. First citation in articleCrossrefGoogle Scholar

  • Jordan, N. C. , Kaplan, D. , Hanich, L. B. (2002). Achievement growth in children with learning difficulties in mathematics: Findings of a two-year longitudinal study. Journal of Educational Psychology , 94, 586 – 597. First citation in articleCrossrefGoogle Scholar

  • Jordan, N. C. , Montani, T. O. (1997). Cognitive arithmetic and problem solving: A comparison of children with specific and general mathematics difficulties. Journal of Learning Disabilities , 30, 624 – 634. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. , Delazer, M. , Pohl, R. , Semenza, C. , Dowker, A. (2005). Effects of a specific numeracy educational program in preschool children: A pilot study. Educational Research and Evaluation , 11, 405 – 431. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, L. , Graf, M. , Krinzinger, H. , Delazer, M. , Willmes, K. (2008). Test zur Erfassung numerisch-rechnerischer Kompetenzen vom Kindergarten bis zur 3. Klasse (TEDI-MATH). Bern: Huber. First citation in articleGoogle Scholar

  • Kaufmann, L. , Handl, P. , Delazer, M. (2005). Wie Kinder rechnen lernen und was ihnen dabei hilft – eine kognitiv-neuropsychologische Perspektive. In M. von Aster & J. H. Lorenz (Eds.), Rechenstörungen bei Kindern. Neurowissenschaft, Psychologie, Pädagogik. Göttingen: Vandenhoeck & Ruprecht. First citation in articleGoogle Scholar

  • Kaufmann, L. , Handl, P. , Thöny, B. (2003). Evaluation of a numeracy intervention program focusing on basic numerical knowledge and conceptual knowledge: A pilot study. Journal of Learning Disabilities , 36, 564 – 573. First citation in articleCrossrefGoogle Scholar

  • Kaufmann, S. , Wessolowski, S. (2006). Rechenstörungen: Diagnose und Förderbausteine , 1. Auflage. Seelze: Kallmeyer. First citation in articleGoogle Scholar

  • Koontz, K. L. , Berch, D. B. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition , 2, 1 – 23. First citation in articleCrossrefGoogle Scholar

  • Krajewski, K. (2003). Vorhersage von Rechenschwäche in der Grundschule. Hamburg: Kovac. First citation in articleGoogle Scholar

  • Krajewski, K. , Nieding, G. , Schneider, W. (2007). Mengen, zählen, Zahlen. – Die Welt der Mathematik entdecken. Berlin: Cornelsen. First citation in articleGoogle Scholar

  • Krajewski, K. , Schneider, W. (2006). Mathematische Vorläuferfertigkeiten im Vorschulalter und ihre Vorhersagekraft für die Mathematikleistungen bis zum Ende der Grundschulzeit. Psychologie in Erziehung und Unterricht , 53, 124 – 142. First citation in articleGoogle Scholar

  • Kroesbergen, E. H. , van Luit, J. E. H. (2003). Mathematics intervention for children with special educational needs: A meta-analysis. Remedial and Special Education , 24, 97 – 114. First citation in articleCrossrefGoogle Scholar

  • Krüll, E. (1996). Rechenschwäche – was tun? München, Basel: Ernst Reinhardt. First citation in articleGoogle Scholar

  • Landerl, K. , Bevan, A. , Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8 – 9 year old students. Cognition , 93, 99 – 125. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Fussenegger, B. (2006). Dyskalkulie und Legasthenie: Same or different? Sprache – Stimme – Gehör , 30, 165 – 170. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Fussenegger, B. , Moll, K. , Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology , 103, 309 – 324. First citation in articleCrossrefGoogle Scholar

  • Landerl, K. , Kaufmann, L. (2008). Dyskalkulie. Modelle, Diagnose, Therapie und Förderung. München: Ernst Reinhardt UTB. First citation in articleGoogle Scholar

  • Llorente, A. M. , Williams, J. , Satz, P. , D'Elia, L. F. (2003). Children's color trails test (CCTT). Lutz, FL: Psychological Assessment Resources. First citation in articleGoogle Scholar

  • Mayringer, H. , Wimmer, H. (2003). Das Salzburger Lese-Screening für die Klassenstufen 1 – 4 (SLS 1 – 4). Bern: Huber. First citation in articleGoogle Scholar

  • Milz, I. (1997). Rechenschwächen erkennen und behandeln. Dortmund: Borgmann Verlag. First citation in articleGoogle Scholar

  • Moeller, K. , Pixner, S. , Zuber, J. , Kaufmann, L. , Nuerk, H. C. (2011). Early place-value understanding as a precursor for later arithmetic performance – A longitudinal study on numerical development. Research in Developmental Disabilities , 32, 1837 – 1851. First citation in articleCrossrefGoogle Scholar

  • Passolunghi, M. C. , Cornoldi, C. , De Liberto, S. (1999). Working memory and intrusions of irrelevant information in a group of specific poor problem solvers. Memory & Cognition , 27, 779 – 790. First citation in articleCrossrefGoogle Scholar

  • Pickering, S. , Gathercole, S. (2001). Working memory test battery for children (WMTB-C). London: The Psychological Corporation. First citation in articleGoogle Scholar

  • Powell, S. R. , Fuchs, L. S. , Fuchs, D. , Cirino, P. T. , Fletcher, J. M. (2009). Effects of fact retrieval tutoring on third-grade students with math difficulties with and without reading difficulties. Learning Disabilities Research & Practice , 24, 1 – 11. First citation in articleCrossrefGoogle Scholar

  • Reikerås, E. K. L. (2006). Performance in solving arithmetic problems: a comparison of children with different levels of achievement in mathematics and reading. European Journal of Special Needs Education , 21, 233 – 250. First citation in articleCrossrefGoogle Scholar

  • Rosselli, M. , Matute, E. , Pinto, N. , Ardila, A. (2006). Memory abilities in children with subtypes of dyscalculia. Developmental Neuropsychology , 30, 801 – 818. First citation in articleCrossrefGoogle Scholar

  • Schipper, W. , Dröge, R. , Ebeling, A. (2004). Handbuch für den Mathematikunterricht an Grundschulen: 2. Schuljahr. Braunschweig: Schroedel. First citation in articleGoogle Scholar

  • Schulte-Körne, G. , Mathwig, F. (2001). Das Marburger Rechtschreibtraining. Bochum: Verlag Dr. Dieter Winkler. First citation in articleGoogle Scholar

  • Shalev, R. , Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric Neurology , 24, 337 – 342. First citation in articleCrossrefGoogle Scholar

  • Stock, P. , Desoete, A. , Roeyers, H. (2007). Early markers for arithmetic difficulties. Educational & Child Psychology , 24, 28 – 39. First citation in articleGoogle Scholar

  • von Aster, M. G. (2000). Developmental cognitive neuropsychology of number processing and calculation: Varieties of developmental dyscalculia. European Child & Adolescent Psychiatry , 9, 41 – 57. First citation in articleCrossrefGoogle Scholar

  • von Aster, M. G. , Schweiter, M. , Weinhold Zulauf, M. (2007). Rechenstörungen bei Kindern. Vorläufer, Prävalenz und psychische Symptome. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie , 39, 85 – 96. First citation in articleLinkGoogle Scholar

  • von Aster, M. G. , Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology , 49, 868 – 873. First citation in articleCrossrefGoogle Scholar

  • Wilson, A. J. , Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson & K. Fischer (Eds.), Human behavior, learning and the developing brain, Atypical development (pp. 212 – 263). New York: Guilford Press. First citation in articleGoogle Scholar